FunctionExpand

FunctionExpand[expr]

tries to expand out special and certain other functions in expr, when possible reducing compound arguments to simpler ones.

FunctionExpand[expr,assum]

expands using assumptions.

Examples

open allclose all

Basic Examples(2)

Expand constants:

Find expansion in terms of simpler functions:

Scope(9)

Expansions of constants:

Expansions of elementary functions and their compositions:

Expansions of orthogonal polynomials and related functions:

FunctionExpand reduces compound arguments to simpler ones:

Expansions of elliptic functions:

Expansions of number theoretic functions:

Expansions of unevaluated derivatives:

Expansions of hypergeometric family functions:

Expansion of special functions:

Options(3)

Assumptions(3)

Some expansions are valid under additional assumptions:

Here n is assumed to be a generic complex number:

Assume n to be an integer:

FunctionExpand applies transformations valid for generic index ν:

Use Assumptions to get a specific transformation:

Applications(1)

Rewrite a solution returned by DSolve:

Properties & Relations(2)

The output is generically equivalent to the input:

FunctionExpand is used as a transformation function in FullSimplify:

FullSimplify will produce the simplest form found:

Possible Issues(2)

FunctionExpand may not always expand expressions involving inexact numbers:

Some transformations used by FunctionExpand are only generically valid:

Wolfram Research (1996), FunctionExpand, Wolfram Language function, https://reference.wolfram.com/language/ref/FunctionExpand.html (updated 2008).

Text

Wolfram Research (1996), FunctionExpand, Wolfram Language function, https://reference.wolfram.com/language/ref/FunctionExpand.html (updated 2008).

CMS

Wolfram Language. 1996. "FunctionExpand." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2008. https://reference.wolfram.com/language/ref/FunctionExpand.html.

APA

Wolfram Language. (1996). FunctionExpand. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FunctionExpand.html

BibTeX

@misc{reference.wolfram_2022_functionexpand, author="Wolfram Research", title="{FunctionExpand}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FunctionExpand.html}", note=[Accessed: 12-August-2022 ]}

BibLaTeX

@online{reference.wolfram_2022_functionexpand, organization={Wolfram Research}, title={FunctionExpand}, year={2008}, url={https://reference.wolfram.com/language/ref/FunctionExpand.html}, note=[Accessed: 12-August-2022 ]}