# HeatTemperatureCondition

HeatTemperatureCondition[pred,vars,pars]

represents a thermal surface boundary condition for PDEs with predicate pred indicating where it applies, with model variables vars and global parameters pars.

HeatTemperatureCondition[pred,vars,pars,lkey]

represents a thermal surface boundary condition with local parameters specified in pars[lkey].

# Details  • HeatTemperatureCondition specifies a boundary condition for HeatTransferPDEComponent.
• HeatTemperatureCondition is typically used to set a specific temperature on the boundary. Common examples include the heat given off by a CPU to a heat sink.
• • HeatTemperatureCondition sets a specific temperature on the boundary with dependent variable , independent variables and time variable .
• Stationary variables vars are vars={Θ[x1,,xn],{x1,,xn}}.
• Time-dependent variables vars are vars={Θ[t,x1,,xn],t,{x1,,xn}}.
• The thermal surface condition HeatTemperatureCondition models .
• • Model parameters pars are specified as for HeatTransferPDEComponent.
• The following additional model parameters pars can be given:
•  parameter default symbol "SurfaceTemperature" 0 , surface temperature in • HeatTemperatureCondition evaluates to a DirichletCondition.
• The boundary predicate pred can be specified as in DirichletCondition.
• If the HeatTemperatureCondition depends on parameters that are specified in the association pars as ,keypi,pivi,], the parameters are replaced with .

# Examples

open allclose all

## Basic Examples(2)

Set up a thermal surface boundary condition:

Compute the temperature field with model variables and parameters with a thermal surface of at the left boundary:

Set up the equation:

Solve the PDE:

Visualize the solution and note the sinusoidal temperature change on the left:

## Scope(4)

Define model variables vars for a transient acoustic pressure field with model parameters pars and a specific boundary condition parameter:

Define model variables vars for a transient acoustic pressure field with model parameters pars and multiple specific parameter boundary conditions:

### 1D(1)

Model a temperature field with two heat conditions at the sides: Set up the heat transfer model variables :

Set up a region :

Specify the heat transfer model parameter thermal conductivity :

Specify the heat surface conditions:

Set up the equation:

Solve the PDE:

Visualize the solution:

### 3D(1)

Model a temperature field with two heat conditions at the sides and an orthotropic thermal conductivity : Set up the heat transfer model variables :

Set up a region :

Specify an orthotropic thermal conductivity :

Specify the heat surface conditions:

Set up the equation with a thermal heat flux of applied at the left end for the first 300 seconds:

Solve the PDE:

Visualize the solution: