HeatFluxValueCopy to clipboard.
✖
HeatFluxValue
represents a thermal heat flux boundary condition for PDEs with predicate pred indicating where it applies, with model variables vars and global parameters pars.
represents a thermal heat flux boundary condition with local parameters specified in pars[lkey].
Details



- HeatFluxValue specifies a boundary condition for HeatTransferPDEComponent and is used as part of the modeling equation:
- HeatFluxValue is typically used to model heat flow through a boundary caused by a heat source or sink outside of the domain.
- A flow rate is the flow of a quantity like energy or mass per time. Flux is the flow rate through the boundary and is measured in the units of the quantity per area per time.
- HeatFluxValue models the rate of thermal energy flowing through some part of the boundary with dependent variable temperature
in [
], independent variables
in [
] and time variable
in [
].
- Stationary variables vars are vars={Θ[x1,…,xn],{x1,…,xn}}.
- Time-dependent variables vars are vars={Θ[t,x1,…,xn],t,{x1,…,xn}}.
- The non-conservative time dependent heat transfer model HeatTransferPDEComponent is based on a convection-diffusion model with mass density
, specific heat capacity
, thermal conductivity
, convection velocity vector
and heat source
:
- In the non-conservative form, HeatFluxValue with heat flux
in [
] or [
] and boundary unit normal
models:
- Model parameters pars as specified for HeatTransferPDEComponent.
- The following additional model parameters pars can be given:
-
parameter default symbol "BoundaryUnitNormal" Automatic "HeatFlux" - 0
, heat flux [
]
- All model parameters may depend on any of
,
and
, as well as other dependent variables.
- To localize model parameters, a key lkey can be specified and values from association pars[lkey] are used for model parameters.
- HeatFluxValue evaluates to a NeumannValue.
- The boundary predicate pred can be specified as in NeumannValue.
- If the HeatFluxValue depends on parameters
that are specified in the association pars as …,keypi…,pivi,…], the parameters
are replaced with
.





Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Set up a thermal heat flux boundary condition:

https://wolfram.com/xid/0bni4boi2fj8q-vw7olo

Model a temperature field and a thermal insulation and a thermal heat flux boundary with:
Set up the heat transfer model variables :

https://wolfram.com/xid/0bni4boi2fj8q-l31rgn

https://wolfram.com/xid/0bni4boi2fj8q-mb3sl1
Specify heat transfer model parameters mass density , specific heat capacity
and thermal conductivity
:

https://wolfram.com/xid/0bni4boi2fj8q-twb86
Specify boundary condition parameters for a heat flux of
:

https://wolfram.com/xid/0bni4boi2fj8q-uhib7k

https://wolfram.com/xid/0bni4boi2fj8q-hk3stc


https://wolfram.com/xid/0bni4boi2fj8q-ubindq


https://wolfram.com/xid/0bni4boi2fj8q-kb731w

https://wolfram.com/xid/0bni4boi2fj8q-vxinx8

https://wolfram.com/xid/0bni4boi2fj8q-82p6y4

Scope (5)Survey of the scope of standard use cases
Basic Examples (3)
Define model variables vars for a transient acoustic pressure field with model parameters pars and a specific boundary condition parameter:

https://wolfram.com/xid/0bni4boi2fj8q-glqeii

Define model variables vars for a transient heat field with model parameters pars and multiple specific parameter boundary conditions:

https://wolfram.com/xid/0bni4boi2fj8q-uwpzeb

https://wolfram.com/xid/0bni4boi2fj8q-hwq3hg


https://wolfram.com/xid/0bni4boi2fj8q-zk0k6a

Model a temperature field and a thermal insulation and a thermal heat flux boundary with:
Set up the heat transfer model variables :

https://wolfram.com/xid/0bni4boi2fj8q-58b0vw

https://wolfram.com/xid/0bni4boi2fj8q-pxkjuo
Specify heat transfer model parameters mass density , specific heat capacity
and thermal conductivity
:

https://wolfram.com/xid/0bni4boi2fj8q-hxcnyd
Specify boundary condition parameters for a heat flux of
:

https://wolfram.com/xid/0bni4boi2fj8q-ml9b8u

https://wolfram.com/xid/0bni4boi2fj8q-8fooqp


https://wolfram.com/xid/0bni4boi2fj8q-rmaw60

https://wolfram.com/xid/0bni4boi2fj8q-nnhj0f

https://wolfram.com/xid/0bni4boi2fj8q-31aqe5

Time Dependent (1)
Model a temperature field and a thermal heat flux through part of the boundary with:
Set up the heat transfer model variables :

https://wolfram.com/xid/0bni4boi2fj8q-7ny7iw

https://wolfram.com/xid/0bni4boi2fj8q-gwy6jj
Specify heat transfer model parameters mass density , specific heat capacity
and thermal conductivity
:

https://wolfram.com/xid/0bni4boi2fj8q-5shujp
Specify a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0bni4boi2fj8q-qij550

https://wolfram.com/xid/0bni4boi2fj8q-hp017j
Set up the equation with a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0bni4boi2fj8q-s8azb


https://wolfram.com/xid/0bni4boi2fj8q-m1n2xb

https://wolfram.com/xid/0bni4boi2fj8q-4d7cd1

Time-Dependent Nonlinear (1)
Model a temperature field with a nonlinear heat conductivity term with:
Set up the heat transfer model variables :

https://wolfram.com/xid/0bni4boi2fj8q-u5cci5

https://wolfram.com/xid/0bni4boi2fj8q-uo2l5e
Specify heat transfer model parameters mass density , specific heat capacity
and a nonlinear thermal conductivity
:

https://wolfram.com/xid/0bni4boi2fj8q-3t4q7p
Specify a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0bni4boi2fj8q-j6ntf

https://wolfram.com/xid/0bni4boi2fj8q-k5ayvo
Set up the equation with a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0bni4boi2fj8q-dtflit


https://wolfram.com/xid/0bni4boi2fj8q-kf4hr2
Solve a linear version of the PDE:

https://wolfram.com/xid/0bni4boi2fj8q-c8kfxe

https://wolfram.com/xid/0bni4boi2fj8q-c1eliu

Applications (2)Sample problems that can be solved with this function
Time Dependent (1)
Model a temperature field and a thermal heat flux through part of the boundary with:
Set up the heat transfer model variables :

https://wolfram.com/xid/0bni4boi2fj8q-34j9jk

https://wolfram.com/xid/0bni4boi2fj8q-r7tzll
Specify heat transfer model parameters mass density , specific heat capacity
and thermal conductivity
:

https://wolfram.com/xid/0bni4boi2fj8q-nh5hwt
Specify a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0bni4boi2fj8q-qhujyr

https://wolfram.com/xid/0bni4boi2fj8q-mo5420
Set up the equation with a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0bni4boi2fj8q-q9buq4


https://wolfram.com/xid/0bni4boi2fj8q-hdh9t

https://wolfram.com/xid/0bni4boi2fj8q-9rw1lg

Time-Dependent Nonlinear (1)
Model a temperature field with a nonlinear heat conductivity term with:
Set up the heat transfer model variables :

https://wolfram.com/xid/0bni4boi2fj8q-89v7o3

https://wolfram.com/xid/0bni4boi2fj8q-pwm7no
Specify heat transfer model parameters mass density , specific heat capacity
and a nonlinear thermal conductivity
:

https://wolfram.com/xid/0bni4boi2fj8q-52zc5m
Specify a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0bni4boi2fj8q-olua29

https://wolfram.com/xid/0bni4boi2fj8q-07dtcx
Set up the equation with a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0bni4boi2fj8q-q79fer


https://wolfram.com/xid/0bni4boi2fj8q-ba1s25
Solve a linear version of the PDE:

https://wolfram.com/xid/0bni4boi2fj8q-vk4bd5

https://wolfram.com/xid/0bni4boi2fj8q-q1rikc

Wolfram Research (2020), HeatFluxValue, Wolfram Language function, https://reference.wolfram.com/language/ref/HeatFluxValue.html.
Text
Wolfram Research (2020), HeatFluxValue, Wolfram Language function, https://reference.wolfram.com/language/ref/HeatFluxValue.html.
Wolfram Research (2020), HeatFluxValue, Wolfram Language function, https://reference.wolfram.com/language/ref/HeatFluxValue.html.
CMS
Wolfram Language. 2020. "HeatFluxValue." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeatFluxValue.html.
Wolfram Language. 2020. "HeatFluxValue." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeatFluxValue.html.
APA
Wolfram Language. (2020). HeatFluxValue. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeatFluxValue.html
Wolfram Language. (2020). HeatFluxValue. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeatFluxValue.html
BibTeX
@misc{reference.wolfram_2025_heatfluxvalue, author="Wolfram Research", title="{HeatFluxValue}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/HeatFluxValue.html}", note=[Accessed: 26-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_heatfluxvalue, organization={Wolfram Research}, title={HeatFluxValue}, year={2020}, url={https://reference.wolfram.com/language/ref/HeatFluxValue.html}, note=[Accessed: 26-March-2025
]}