WOLFRAM

Hyperplane[n,p]

represents the hyperplane with normal n passing through the point p.

Hyperplane[n,c]

represents the hyperplane with normal n given by the points that satisfy .

Details

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

A Hyperplane in 2D:

Out[1]=1

And in 3D:

Out[7]=7

Different styles applied to a hyperplane region:

Out[2]=2

Determine if points belong to a given hyperplane region:

Out[2]=2

Scope  (15)Survey of the scope of standard use cases

Graphics  (5)

Specification  (2)

A hyperplane in 2D defined by a normal vector and a point:

Out[2]=2

The same hyperplane defined by a normal vector and a constant:

Out[4]=4

Define a hyperplane in 3D using a normal vector and a point:

Out[6]=6

Define the same hyperplane using a normal vector and a constant:

Out[8]=8

Hyperplanes varying in direction of the normal:

Out[1]=1

Styling  (2)

Color directives specify the color of the hyperplane:

Out[1]=1

FaceForm and EdgeForm can be used to specify the styles of the faces and edges:

Out[1]=1

Coordinates  (1)

Points and vectors can be Dynamic:

Out[1]=1

Regions  (10)

Embedding dimension is the dimension of the coordinates:

Out[1]=1
Out[2]=2

Geometric dimension is the dimension of the region itself:

Out[1]=1
Out[2]=2

Point membership test:

Out[2]=2

Get the conditions for membership:

Out[3]=3

A hyperplane has infinite measure and undefined centroid:

Out[2]=2
Out[3]=3

Distance from a point:

Out[2]=2

Signed distance from a point:

Out[3]=3

Nearest point in the region:

Out[2]=2

Nearest points:

Out[4]=4

A hyperplane is unbounded:

Out[2]=2

Find the region range:

Out[3]=3

In the axis-aligned case, it is bounded in some directions:

Out[5]=5
Out[6]=6

Integrate over a hyperplane:

Out[2]=2

Optimize over a hyperplane:

Out[2]=2

Solve equations over a hyperplane:

Out[2]=2

Applications  (11)Sample problems that can be solved with this function

Hyperplane Arrangements  (7)

In a parallel arrangement of hyperplanes, all hyperplanes have the same normal n:

Out[1]=1
Out[2]=2

Orthogonal arrangements of hyperplanes:

Out[1]=1
Out[2]=2

Grids of hyperplanes:

Out[1]=1
Out[2]=2

Random arrangements of hyperplanes:

Out[1]=1
Out[2]=2

A pencil of hyperplanes is all hyperplanes through a point:

Out[1]=1

A sheaf of hyperplanes is all hyperplanes through a line:

Out[1]=1

A bundle of hyperplanes, where all pass through a common point:

Out[1]=1

Tangent Planes  (4)

A tangent plane to an implicitly defined curve in 2D is given by its normal TemplateBox[{{f, (, {x, ,, y}, )}, {{, {x, ,, y}, }}}, Grad] at a point on the curve. Start by finding points on the curve:

Out[2]=2

Find tangent lines at each of the points:

Out[3]=3

Visualize the solution:

Out[4]=4

A tangent plane to an implicitly defined surface in 3D is also given by its normal TemplateBox[{{f, (, {x, ,, y, ,, z}, )}, {{, {x, ,, y, ,, z}, }}}, Grad] and a point on the surface. Start by finding points on the surface:

Out[2]=2

Find tangent planes at each of the points:

Out[3]=3

Visualize the solution:

Out[4]=4

A tangent line for a parametric curve can be defined by its normal for some value of the parameter . Start by picking parameter values:

Out[2]=2

Find tangent lines for each parameter value:

Out[3]=3

Visualize the solution:

Out[4]=4

A tangent plane for a parametric surface can be defined by its normal for some value of the parameters and . Start by picking parameter values:

Out[2]=2

Find tangent planes at each of the points:

Out[3]=3

Visualize the solution:

Out[4]=4

Properties & Relations  (7)Properties of the function, and connections to other functions

Hyperplane is a special case of ConicHullRegion:

Out[5]=5

Hyperplane is a special case of AffineSpace:

Out[3]=3

InfiniteLine is a special case of Hyperplane:

Out[3]=3

InfinitePlane is a special case of Hyperplane:

Out[3]=3

ParametricRegion can represent any Hyperplane in :

Out[3]=3

In :

Out[7]=7

ImplicitRegion can represent any Hyperplane in :

Out[1]=1
Out[3]=3

In :

Out[4]=4
Out[6]=6

ClipPlanes for a given results in a graphic that does not render anything on the side of that is in the negative direction of the normal :

Out[1]=1

Neat Examples  (4)Surprising or curious use cases

A random collection of lines:

Out[1]=1

A random collection of planes:

Out[1]=1

Organized collection of lines:

Out[1]=1
Out[2]=2

Sweep a hyperplane around an axis:

Out[1]=1
Wolfram Research (2015), Hyperplane, Wolfram Language function, https://reference.wolfram.com/language/ref/Hyperplane.html.
Wolfram Research (2015), Hyperplane, Wolfram Language function, https://reference.wolfram.com/language/ref/Hyperplane.html.

Text

Wolfram Research (2015), Hyperplane, Wolfram Language function, https://reference.wolfram.com/language/ref/Hyperplane.html.

Wolfram Research (2015), Hyperplane, Wolfram Language function, https://reference.wolfram.com/language/ref/Hyperplane.html.

CMS

Wolfram Language. 2015. "Hyperplane." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Hyperplane.html.

Wolfram Language. 2015. "Hyperplane." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Hyperplane.html.

APA

Wolfram Language. (2015). Hyperplane. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Hyperplane.html

Wolfram Language. (2015). Hyperplane. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Hyperplane.html

BibTeX

@misc{reference.wolfram_2025_hyperplane, author="Wolfram Research", title="{Hyperplane}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/Hyperplane.html}", note=[Accessed: 29-April-2025 ]}

@misc{reference.wolfram_2025_hyperplane, author="Wolfram Research", title="{Hyperplane}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/Hyperplane.html}", note=[Accessed: 29-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_hyperplane, organization={Wolfram Research}, title={Hyperplane}, year={2015}, url={https://reference.wolfram.com/language/ref/Hyperplane.html}, note=[Accessed: 29-April-2025 ]}

@online{reference.wolfram_2025_hyperplane, organization={Wolfram Research}, title={Hyperplane}, year={2015}, url={https://reference.wolfram.com/language/ref/Hyperplane.html}, note=[Accessed: 29-April-2025 ]}