InfinitePlane

InfinitePlane[{p1,p2,p3}]

represents the plane passing through the points p1, p2, and p3.

InfinitePlane[p,{v1,v2}]

represents the plane passing through the point p in the directions v1 and v2.

Details

Examples

open allclose all

Basic Examples  (3)

An InfinitePlane in 3D:

Different styles applied to an infinite plane:

Determine if points belong to a given infinite plane:

Scope  (17)

Graphics  (7)

Specification  (2)

Define an infinite plane in 3D using three points:

Define the same plane using a single point and two tangent vectors:

An infinite plane varying in direction:

Styling  (2)

Color directives specify the color of the infinite plane:

FaceForm and EdgeForm can be used to specify the styles of the faces and edges:

Coordinates  (3)

Specify coordinates by fractions of the plot range:

Specify scaled offsets from the ordinary coordinates:

Points and vectors can be Dynamic:

Regions  (10)

Embedding dimension is the dimension of the coordinates:

Geometric dimension is the dimension of the region itself:

Point membership test:

Get the conditions for membership:

An infinite plane has infinite measure and undefined centroid:

Distance from a point:

Signed distance from a point:

Nearest point in the region:

Nearest points:

An infinite plane is unbounded:

Find the region range:

Integrate over an infinite plane:

Optimize over an infinite plane:

Solve equations over an infinite plane:

Applications  (7)

Find the plane in which a triangle is embedded:

InfinitePlane can use the same parametrization as Triangle:

Find the plane in which a polygon is embedded:

To find the plane, take the first three points (or any three points not on a line):

The tangent plane to a parametric surface f[u,v] is given by InfinitePlane[f[u,v],{uf[u,v],vf[u,v]}]. Find the tangent plane to the parametric surface :

Find the tangent plane to the surface :

Find the intersection points of a sphere, a plane, and a surface defined by :

Visualize intersection points:

Partition space in a BubbleChart:

Combine the graphics:

Visualize a reflection plane:

Define a reflection plane:

Define a ReflectionTransform using a point on the plane and its normal vector:

Visualize the reflection of a unit cube about the plane:

Properties & Relations  (5)

InfinitePlane[{p1,p2,p3}] is equivalent to InfinitePlane[p1,{p2-p1,p3-p1}]:

ParametricRegion can represent any InfinitePlane:

ImplicitRegion can represent any InfinitePlane:

InfinitePlane is a special case of ConicHullRegion:

Any InfinitePlane can be represented as a union of two HalfPlane regions:

Neat Examples  (2)

A random collection of planes:

Sweep an infinite plane around an axis:

Introduced in 2014
 (10.0)
 |
Updated in 2016
 (11.0)