InverseErfc
InverseErfc[s]
gives the inverse complementary error function obtained as the solution for z in .
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- Explicit numerical values are given only for real values of s between 0 and 2.
- For certain special arguments, InverseErfc automatically evaluates to exact values.
- InverseErfc can be evaluated to arbitrary numerical precision.
- InverseErfc automatically threads over lists.
Examples
open allclose allBasic Examples (4)
Scope (19)
Numerical Evaluation (3)
Evaluate numerically to high precision:
The precision of the output tracks the precision of the input:
Evaluate InverseErfc efficiently at high precision:
InverseErfc threads elementwise over lists and arrays:
Specific Values (4)
Exact results for specific arguments:
Find a real root of the equation :
Plot the InverseErfc function:
Plot the InverseErfc function:
Function Properties (2)
Integration (3)
Indefinite integral of InverseErfc:
Definite integral of InverseErfc over its real domain:
Numerical approximation of the definite integral of InverseErfc:
Series Expansions (2)
Series expansion for InverseErfc around :
Taylor expansion for InverseErfc around :
Plot the first three approximations for InverseErfc around :
Function Representations (3)
Primary definition of the inverse error function:
Relation to the inverse complementary error function:
TraditionalForm formatting:
Properties & Relations (4)
Solve a transcendental equation:
Numerically find a root of a transcendental equation:
Compose with the inverse function:
Use PowerExpand to disregard multivaluedness of the inverse function:
InverseErfc is a numeric function:
Possible Issues (1)
InverseErfc evaluates numerically only for :
Neat Examples (1)
Riemann surface of InverseErfc:
Text
Wolfram Research (1996), InverseErfc, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseErfc.html.
BibTeX
BibLaTeX
CMS
Wolfram Language. 1996. "InverseErfc." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseErfc.html.
APA
Wolfram Language. (1996). InverseErfc. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseErfc.html