# WeberE

WeberE[ν,z]

gives the Weber function .

WeberE[ν,μ,z]

gives the associated Weber function .

# Details

• Mathematical function, suitable for both symbolic and numerical manipulation.
• satisfies the differential equation .
• is defined by .
• WeberE[ν,z] is an entire function of z with no branch cut discontinuities.
• is defined by .
• For certain special arguments, WeberE automatically evaluates to exact values.
• WeberE can be evaluated to arbitrary numerical precision.
• WeberE automatically threads over lists.
• WeberE can be used with Interval and CenteredInterval objects. »

# Examples

open allclose all

## Basic Examples(4)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

## Scope(35)

### Numerical Evaluation(6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around:

Compute the elementwise values of an array:

Or compute the matrix WeberE function using MatrixFunction:

### Specific Values(6)

Limiting value at infinity:

Values at zero:

WeberE for symbolic ν and x:

Find the first positive maximum of WeberE:

WeberE defined as StruveH for integer orders:

Evaluate WeberE for half-integer orders:

### Visualization(3)

Plot the WeberE function for integer () and half-integer () orders:

Plot the real part of :

Plot the imaginary part of :

Plot the real part of :

Plot the imaginary part of :

### Function Properties(12)

The real domain of :

The complex domain of :

is defined for all real values:

The complex domain is the whole plane:

The approximate function range of :

Use FullSimplify to simplify Weber functions:

is an analytic function of x:

is neither non-decreasing nor non-increasing:

is not injective:

is neither non-negative nor non-positive:

has neither singularities nor discontinuities:

is neither convex nor concave:

### Differentiation and Integration(5)

The first derivatives with respect to z:

Higher derivatives with respect to z:

Plot the higher derivatives with respect to z when ν=1/4:

The formula for the derivative with respect to z when ν=2:

Indefinite integral of WeberE:

More integrals:

### Series Expansions(3)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

The general term in the series expansion using SeriesCoefficient:

The Taylor expansion at a generic point:

## Properties & Relations(2)

Use FunctionExpand to expand WeberE into hypergeometric functions:

Relationships between the Anger and Weber functions:

Wolfram Research (2008), WeberE, Wolfram Language function, https://reference.wolfram.com/language/ref/WeberE.html.

#### Text

Wolfram Research (2008), WeberE, Wolfram Language function, https://reference.wolfram.com/language/ref/WeberE.html.

#### CMS

Wolfram Language. 2008. "WeberE." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WeberE.html.

#### APA

Wolfram Language. (2008). WeberE. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeberE.html

#### BibTeX

@misc{reference.wolfram_2024_webere, author="Wolfram Research", title="{WeberE}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/WeberE.html}", note=[Accessed: 19-September-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_webere, organization={Wolfram Research}, title={WeberE}, year={2008}, url={https://reference.wolfram.com/language/ref/WeberE.html}, note=[Accessed: 19-September-2024 ]}