WOLFRAM SYSTEMMODELER

Mass

Sliding mass with inertia

Wolfram Language

In[1]:=
SystemModel["Modelica.Mechanics.Translational.Components.Mass"]
Out[1]:=

Information

This information is part of the Modelica Standard Library maintained by the Modelica Association.

Sliding mass with inertia, without friction and two rigidly connected flanges.

The sliding mass has the length L, the position coordinate s is in the middle. Sign convention: A positive force at flange flange_a moves the sliding mass in the positive direction. A negative force at flange flange_a moves the sliding mass to the negative direction.

Parameters (3)

L

Value: 0

Type: Length (m)

Description: Length of component, from left flange to right flange (= flange_b.s - flange_a.s)

m

Value:

Type: Mass (kg)

Description: Mass of the sliding mass

stateSelect

Value: StateSelect.default

Type: StateSelect

Description: Priority to use s and v as states

Connectors (2)

flange_a

Type: Flange_a

Description: Left flange of translational component

flange_b

Type: Flange_b

Description: Right flange of translational component

Used in Examples (22)

ActuatorWithNoise

Modelica.Blocks.Examples.NoiseExamples

Demonstrates how to model measurement noise in an actuator

AIMC_Conveyor

Modelica.Electrical.Machines.Examples.AsynchronousInductionMachines

Test example: AsynchronousInductionMachineSquirrelCage with inverter driving a conveyor

ArmatureStroke

Modelica.Magnetic.FluxTubes.Examples.MovingCoilActuator

Armature stroke of both moving coil actuator models after a voltage step at time t=0

ComparisonPullInStroke

Modelica.Magnetic.FluxTubes.Examples.SolenoidActuator

Pull-in stroke of both solenoid models after a voltage step at time t=0

AIMC_Conveyor

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Asynchronous induction machine with squirrel cage and inverter driving a conveyor

IMC_Conveyor

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines

Induction machine with squirrel cage and inverter driving a conveyor

RollingWheel

Modelica.Mechanics.Rotational.Examples

Demonstrate coupling Rotational - Translational

SignConvention

Modelica.Mechanics.Translational.Examples

Examples for the used sign conventions

InitialConditions

Modelica.Mechanics.Translational.Examples

Setting of initial conditions

WhyArrows

Modelica.Mechanics.Translational.Examples

Use of arrows in Mechanics.Translational

Accelerate

Modelica.Mechanics.Translational.Examples

Use of model accelerate

Damper

Modelica.Mechanics.Translational.Examples

Use of damper models

Oscillator

Modelica.Mechanics.Translational.Examples

Oscillator demonstrates the use of initial conditions

Sensors

Modelica.Mechanics.Translational.Examples

Sensors for translational systems

Friction

Modelica.Mechanics.Translational.Examples

Use of model Stop

PreLoad

Modelica.Mechanics.Translational.Examples

Preload of a spool using ElastoGap models

ElastoGap

Modelica.Mechanics.Translational.Examples

Demonstrate usage of ElastoGap

Brake

Modelica.Mechanics.Translational.Examples

Demonstrate braking of a translational moving mass

HeatLosses

Modelica.Mechanics.Translational.Examples

Demonstrate the modeling of heat losses

EddyCurrentBrake

Modelica.Mechanics.Translational.Examples

Demonstrate the usage of the translational eddy current brake

GenerationOfFMUs

Modelica.Mechanics.Translational.Examples

Example to demonstrate variants to generate FMUs (Functional Mock-up Units)

TestCylinder

Modelica.Thermal.FluidHeatFlow.Examples

Two cylinder system

Used in Components (3)

TranslatoryArmatureAndStopper

Modelica.Magnetic.FluxTubes.Examples.Utilities

Mass with free travel between two stoppers

DirectMass

Modelica.Mechanics.Translational.Examples.Utilities

Input/output block of a direct mass model

InverseMass

Modelica.Mechanics.Translational.Examples.Utilities

Input/output block of an inverse mass model