物質輸送
Contents
はじめに
このチュートリアルでは,希釈種の物質輸送のモデリングの基本を説明する.物質輸送解析を行うのに関連する方程式と境界条件を導出し,解説する.
物質輸送は,化学種の運動に関する化学工学の分野である.物質輸送の2つのメカニズムは物質拡散と物質対流である.物質拡散の動力となるのはさまざまな場所における種濃度の差である.一方,物質対流は種が運動している流体媒体で輸送されるときにのみ発生する.この2つのメカニズムが組み合さると,時間に伴う種濃度場の変化を引き起こし,質量平衡方程式でモデル化される.
このモデリングプロセスは,NDSolveで解くことができる偏微分方程式(PDE)となる.さらにこのチュートリアルでは,いろいろな種類の質量輸送境界条件を紹介する.与えられた境界条件について,さまざまな現実世界の化学種の相互作用をモデル化する方法を示す.
このノートブックは,物質移動をモデル化する方法の基本を提供する.簡単でありながら分かりやすい例を示すことに焦点を置く.物質移動モデリングの産業的な応用例を示す拡張例題は物質移動モデルコレクションで見ることができる.
このノートブックで示されているシミュレーション結果のアニメーションの多くはRasterizeの呼出しで生成されている.これはこのノートブックが必要とするディスク容量を減らすためである.この欠点はアニメーションの視覚的な品質が,呼出しなしの場合ほど鮮明ではないという点である.高品質のグラフィックスが取得したい場合は,Rasterizeの呼び出しを削除するかコメントアウトするとよい.
このチュートリアルで使われているシンボルおよび対応する単位は,用語集セクションに要約されている.
物質輸送の境界条件
物質輸送モデリングにおける最も一般的な境界条件はDirichletCondition,NeumannValue,PeriodicBoundaryConditionであり,これらは次の4つのタイプに分類できる.
- ディリクレタイプの境界条件.このタイプの境界条件は境界における種濃度 を指定し,DirichletConditionでモデル化することができる.
- ノイマンタイプの境界条件.このタイプの境界条件は境界における質量流束 を指定し,NeumannValueでモデル化することができる.
- ロビンタイプの境界条件.このタイプの境界条件は境界における種濃度 とその法線微分の間の関係を指定する.ロビンタイプの境界条件は厳密に言えば一般化されたノイマン境界条件であるため,これはNeumannValueでモデル化することができる.
- 周期境界条件.このタイプの境界条件は,境界の一部における種濃度 が他の部分と同じになるよう指定し,PeriodicBoundaryConditionでモデル化することができる.
次のセクションでは物質輸送のモデリングでよく使われるいくつかの物理的境界条件,およびDirichletCondition,NeumannValue,PeriodicBoundaryConditionを使ってどのように表すかについて説明する.このため,現在述べている境界条件は常に例のシミュレーション領域の左側にある.例の中には追加の境界条件を右側に置いて,左側の境界条件の動作が分かりやすくなるようにしている.
ノイマンタイプの境界条件の設定は,保存モデルと非保存モデルとでわずかに異なる.この差の詳細は,以下のセクションで示す.
保存モデルおよび非保存モデルのノイマン値
前のセクションで,保存形および非保存形の物質輸送モデルの導出と設定について説明した.モデルの定式の違いはノイマンタイプの境界条件の設定方法およびその意味に影響を及ぼす.
保存形定式では,NeumannValueは の境界値を指定する.NeumannValue[val,X∈Γb]では次のようになる.
非保存形定式ではNeumannValueは の境界値を指定する.NeumannValue[val,X∈Γb]では次のようになる.
保存形の場合,境界から媒体の流れによって物質輸送される項 もノイマン値に含まれる.
提示されている境界条件の中には,ノイマン値の値を変更しなければならないものもある.例えば,方程式(1)のような保存形式のノイマン値は次のように変換しなければならない.
このような変換は問題となる.方程式(2)の左辺のようなノイマン定式は実際には計算されず方程式(3)の右辺の値で置換されるからである.一旦方程式の右辺に法線 が現れると,法線のその値は計算されなければならないがこれは自動的に行われる.境界の単位法線が単純な場合,それはモデルパラメータ"BoundaryUnitNormal"で指定することができる.これによりスピードとメモリ使用量の両方において計算効率が向上する可能性がある.
保存モデルと非保存モデルの物質輸送境界条件を示す前に,例のモデルパラメータをいくつか設定する.
モデルパラメータの設定
次のモデルパラメータは,質量輸送境界条件の例で利用される.これらのパラメータはシミュレーション領域およびシミュレーションの終了時間 を定義する.
例によっては,境界上の質量流束 あるいは濃度 等の過渡パラメータに対する時間プロファイルを既定するために,滑らかな階段関数 を使うことがある.この滑らかな階段関数は次のように定義される.
ここで関数 の最小値と最大値はそれぞれ と で表される.階段の位置は で,滑らかな傾きは で制御される.
濃度境界条件
目的
濃度境界条件の目的は特定の種濃度を境界のある部分に設定することである.
定式化
境界 上に指定された濃度 がある場合,濃度境界条件は以下によって保存モデルと非保存モデルの両方に対して与えられる.
濃度境界条件はディリクレタイプの条件であり,モデル方程式に関連付けられないので,その定式化は保存モデルでも非保存モデルでも同じである.
導出
境界上で既定されている与えられた種濃度 は,濃度境界条件と呼ばれる.この既定の濃度 は定数か時間依存値のいずれかである可能性があり,物質輸送PDEモデルではDirichletConditionで設定される.
例
例えば,境界上で与えられた種の供給をモデル化するためには,左端に過渡種濃度 設定することができる.右端にはノイマンのゼロ条件を流出境界として陰的に適用する.
ここで滑らかな階段関数を使って,から までの境界上における種濃度 のプロファイルを記述する.パラメータ と は,境界からの種の供給のシミュレーションのために任意に選ぶ.
次に,流束場 ,初期濃度場 ,拡散係数 の物質輸送モデルを設定する.
可視化
このシミュレーションは である不撹乱領域から始まる.濃度 が左境界で上昇すると,余分な種は右側に輸送され領域内の全体的な種濃度が上昇する.物質輸送の速度は種の拡散率 と流れ場に依存する.
流出境界条件
目的
物質輸送が流速 のシステム内で発生する場合,種が流体流とともに領域を出る流出口をモデル化するために流出境界条件を使う.
定式化
流体媒体内で物質輸送をモデル化する場合,流出口 における流出境界条件は以下で与えられる.
非保存モデルの場合,流出境界条件は実質的にノイマンのゼロ条件である.つまり,与えられた境界で境界条件が指定されていない場合,流出境界条件が陰的に適用されるのである.
導出
流体流で物質輸送をモデリングする場合,流出口の拡散質量流束はゼロに設定される.流出境界において移動された物質は質量保存だけによるもので,物質拡散 は無視されるということが確実になるようにするためである.
非保存形の定式ではNeumannValue[val,X∈Γb]は境界値(4) を指定する.したがって, のとき はでなければならない.非保存形式の物質輸送モデルは以下で与えられる.
保存形の定式では,NeumannValue[val,X∈Γb]は境界値(5) を指定する.には次が必要である.
流出境界条件は十分発達した流れにのみ適用することができる.つまり,流出口で速度プロファイル は流れの方向を変更しないのである.
流出境界からの再循環は乱流でよく起るが,再循環がある場合,再流入する流れは領域内部の流れの濃度場に影響を与え,ゼロ拡散流束の仮定を破る.このような状態では,流出境界条件はもう適用できない.
例
次の例では,流出境界条件を左端に設定して,領域から流出する質量流束をモデル化する.保存モデルと非保存モデルの両方に対する境界条件の設定を示す.
流出境界の効果を強調するために,種の拡散率 をゼロと仮定する.したがって物質輸送は流体流 の対流のみによるものである.
領域への右側からの種の供給をモデル化するために,濃度境界条件を使う.
次に保存モデルと非保存モデルの両方に対する境界条件の設定を示す.保存モデル形式を加える以外,以下に示す両方の設定は同じである.
流出境界条件を持つ保存形式の物質輸送モデル
このPDEモデルが対流優勢であることを示すメッセージが生成される.この場合拡散質量流束がないため,メッセージが出るのは想定通りである.この問題についての情報は有限要素使用のヒントチュートリアルに記載されている.
流出境界条件を持つ非保存形式の物質輸送モデル
境界のどの部分にも境界条件が指定されていない場合,デフォルトではノイマンのゼロ条件が陰的に使われる.これは流出境界が非保存形式の物質輸送モデルに使われるデフォルトの境界条件であることを意味する.
流出境界条件の可視化
流出境界条件を左境界に適用すると,種は流体流によって反射なしで領域から輸送された.保存モデルと非保存モデルの結果は一致していることが分かる.
質量流束境界条件
目的
質量流束境界条件の目的は,与えられた種が境界のある部分から流入または流出する量をモデル化することである.
定式化
既定の質量流束 が境界 上にある場合,質量流束境界条件は以下で与えられる.
導出
境界に垂直な質量流束 が指定されており,ゼロではない境界は質量流束境界と呼ばれる.
慣習により, の前に負記号を加え,質量流束が外向きの法線 と逆向きに指定されていることを示す.したがって, の正値は,指定された種が領域に入る内向きの質量流束を示し,負の は外向きの流束を示す.
前のセクション輸送方程式の導出で述べたように,質量流束 は拡散流束 と対流流束 からなる.
保存形の定式の場合,NeumannValue[val,X∈Γb]は境界値(6) を指定するということをを先に述べた.したがって,(7)を(8)に挿入すると,保存モデルに対する質量流束境界条件は次で与えられる.
この場合 は であり,NeumannValue[(t,X),X∈Γb]となる.
非保存形の定式では,NeumannValue[val,X∈Γb]は境界値(9) を指定する.よって,(10)の境界対流流束 を右辺に代入すると,非保存モデルに対する質量流束境界条件は次で与えられる.
質量流束 の単位は,境界の次元に依存する.1D (),2D (),3D ()の領域では, の単位はそれぞれ,,である.
例
次の例では,左境界に過渡質量流束 を適用して,実際の化学反応が関与せずに,種が領域内に供給されるのをモデル化する.右境界を流出境界条件として設定し,右端で流出する質量流束をモデル化する.
次に保存モデルと非保存モデルの両方の境界条件を設定する.保存モデル形式を加える以外,以下に示す両方の設定は同じである.
質量流束境界条件を持つ保存物質輸送モデル
ここで流れ場 および流出境界条件を指定して,右端の流出質量流束をモデル化する.
質量流束境界条件を持つ非保存物質輸送モデル
非保存モデルでは,流出境界条件はノイマンのゼロ条件であり,領域の右端で陰的に適用される.
質量流束境界条件の可視化
質量流束 を左境界で適用すると,種は徐々に領域内に輸送される.質量流束が時間 でオフになった後,残りの種は引き続き流体流束とともに領域から輸送され,全体的な濃度場が縮小される.保存モデルと非保存モデルの結果は一致している.
不透過境界条件
不透過境界条件は,境界全域の流束が である場合の質量流束境界条件の特殊系である.
目的
不透過境界条件は,種が通過できないため質量流束が存在しない境界をモデル化するものである.
定式化
保存モデルでは,不透過境界条件は実質的にノイマンのゼロ条件であり,指定された境界で境界条件が指定されていないときに陰的に適用される.
導出
(11)を質量流束境界条件(12)に挿入すると,保存モデルと非保存モデル両方の不透過境界条件の定式化が得られる.
例
次の例ではガウス分布を使って領域内の初期濃度場 を記述する.不透過境界を両側に置いて,境界の質量流束を阻止する.
不透過境界の効果を強調するために,流れ場を と仮定する.つまり物質輸送は拡散にのみよるものである.種の拡散係数は で与えられる.
次に保存モデルと非保存モデル両方の境界条件を示す.保存モデル形式を加える以外,以下に示す両方の設定は同じである.
不透過境界条件を持つ保存物質輸送モデル
境界のどの部分にも境界条件が指定されていない場合,デフォルトではノイマンのゼロ条件が陰的に適用される.つまり,不透過境界は保存物質輸送モデルに使われるデフォルトの境界条件であることを意味する.
ここで流出境界条件も適用して,右端の流出質量流束をモデル化する.
不透過境界条件を持つ非保存物質輸送モデル
不透過境界条件の可視化
初期濃度場は内部拡散により徐々に平坦化されたが,領域内の正味濃度は変化していないことが分かる.これは両端の不透過境界に質量流束がないためである.保存モデルと非保存モデルの結果は一致している.
周囲流束境界条件
周囲流束境界条件は,流速場がゼロ のときという特殊な場合に適用される流束条件である.したがって,周囲流束境界条件は,境界の流束が外部濃度 および による物質移動係数 に依存する場合の質量流束境界条件を拡張するものである.
目的
周囲流束境界条件は,モデル化されたシステムと,流速がゼロ である境界の拡散を介した周囲環境の間の物質移動をモデル化するために使う.
定式化
外部濃度 と境界 上の物質移動係数 のプロファイルが与えられると,周囲流束境界条件は以下で与えられる.
このモデルには流体流束 が関与していないため,周囲流束境界条件の定式化は保存モデルと非保存モデルの両方で同じである.
導出
協会に流体流束がない場合,種が境界を通過するための唯一のメカニズムは拡散である.境界の拡散流束速度は濃度勾配,輸送される種の物理特性,媒体の特性(相や密度等)に依存する.
残念ながら拡散流束と,このような物理特性の間の関係は簡単には決定できない.これに対処するために,物質移動係数 を定義し,これらの要因をまとめる.拡散質量流束は以下のように表すことができる.
ここで はモデル化された領域の周囲における外部濃度である.物質移動係数 実験的に決定することができる[13, 14].物質移動係数 は通常,気体相ではの範囲,流体相ではの範囲である.
(15)を質量流束境界条件(16)に挿入し,流れ場 を設定すると,周囲流束境界条件は次のように書くことができる.
例
Consider a 1D example where 二酸化炭素が領域の左と右の境界から拡散して出る1Dの例を考える.領域の外側の濃度は同程度に薄く,と想定される.境界を通過する拡散質量流束は,与えられた物質移動係数 の周囲流束境界条件によってモデル化される.
この場合,ガウス分布を使って内部濃度場 を記述する.の拡散係数は で与えられる.
周囲流束境界の効果をよりよく理解するために,境界条件を持たない解析解の結果と比較する.つまり,分子は無限範囲の領域を持つかのように拡散し続けるのである.
周囲流束境界条件の可視化
周囲流束条件を両端に適用すると,分子は境界条件がないときよりも速い速度で領域から移動して出て行く.これは境界における物質拡散が,この場合,内部拡散よりも効率的であることを意味している.
周囲環境への拡散流束は場合によって異なり,外部濃度 および物質移動係数 によって制御される.
周囲流束条件があると,正味濃度は3時間で約からまで減少する.
対称境界条件
目的
対称境界条件は,実質的に,境界に垂直な流速がゼロであるシミュレーション領域の線形境界を反映することによって,計算領域の範囲を完全な物理的モデル形状の対称サブ領域に減少させるために使われる.これにより少ないメモリで解を速く処理することができる.
定式化
対称境界条件の定式化は保存モデルでも非保存モデルでも同じである.対称境界の法線流速 はずっとゼロで維持されるため,(17)には境界対流流束項 がない.
対称境界条件は実質的にノイマンのゼロ条件であるため,与えられた境界で境界条件が指定されていない場合は,ノイマンのゼロ条件が陰的に適用される.
導出
線形境界全体で対称性を維持するためには,常に境界に垂直な質量流束 および流れ があってはならない.
(18)を質量流束境界条件(19)に挿入すると,周囲流束境界条件は次のように書くことができる.
例
1Dシステムの濃度場を から まで解く場合を考える.濃度パターンが に沿って鏡面対称であると想定される場合,システムの左半分だけでシミュレーション領域を構築することができる.その後 で対称境界条件を適用しなければならない.
対称性のため,対称境界の濃度勾配 および流速 は常にゼロのままである.厳密に言うと,対称境界は実際には不透過境界である.不透過境界条件(20)で流速 をゼロに設定することにより,対称境界条件は次のように書くことができる.
周期境界条件
目的
周期境界条件の目的は,領域の周期性を使うために,種濃度をある境界から別の境界にマップすることである.
定式化
種濃度 を周期境界 から目的の境界にマップする関数 が与えられると,周期境界条件は次のように書くことができる.
周期境界の定式化は, 保存モデルでも非保存モデルでも同じである.
導出
周期境界条件は,空間的に周期的な領域における物質移動を計算するために適用する.目標の境界が与えられると,周期境界の種濃度 は既定の関数 によって目標表面上の濃度 にマップすることができる.境界条件は,物質輸送PDEモデルのPeriodicBoundaryConditionで設定される.
例
例として,円管内の種の輸送を見る.周期境界条件の使用法では,1D領域でシミュレーションを行うことが可能である.
周期境界の効果を強調するために,種の拡散率 をゼロと想定する.したがって種の輸送は流体流れ の対流のみによるものである.
円管は管の円周に等しい長さ の1Dモデルに変換される.周期境界は左端で設定されるため,種が領域の右側を通過するとき,左側で同じ大きさで再び現れる.
このPDEモデルが対流支配下にあることを表すメッセージが生成される.この場合は拡散質量流束がないため,メッセージは想定通りである.この問題についての情報は有限要素の使用法のヒントチュートリアルに記載されている.
周期境界条件の可視化
種は,空間的に周期的な領域内の流体流れによって右に輸送されたことが分かる.種が右の境界を通過すると,それは左側にまた現れる.これは周期境界条件で設定されたこの領域の周期性のためである.種の拡散率はゼロに設定されており,物質は対流によってのみ輸送されるので,種濃度のパターンと大きさは常に一定のままである.
付録
物質平衡方程式の特別な場合
物質平衡方程式の導出のセクションで示した通り,物質平衡方程式の保存形と非保存形は次で与えられる.
以下のセクションでは物質平衡方程式の特別な場合と,それが円筒座標および球座興でどのように表せるかを示す.
定常の場合
濃度場が定常状態にある場合,物質平衡方程式(21)および(22)の過渡項は消失し,物質平衡方程式は以下のように簡約される.
拡散のみによる物質輸送
物質輸送が固体媒体で生じる場合,定義上固体は内部速度場 を持たないため,物質平衡方程式(23)および(24)の対流項はゼロに設定され,以下が得られる.
対流のみによる物質輸送
流体流れによる物質輸送をモデル化する場合,物質輸送が物質対流convection,tによって支配されているならば拡散項は無視でき,以下が得られる.
対流成分および が大きくなる場合,物質輸送モデルは対流支配下のPDEになる.このタイプのPDEの解は不安定になる可能性があるため,追加の安定化方法が必要になることがある.この問題についての情報は有限要素の使用のヒントチュートリアルに記載されている.
円筒座標系における物質平衡方程式
物質輸送問題をモデル化する場合,モデルを直交座標で記述するのは便利ではないことがある.熱方程式も円筒座標系あるいは球座標系を使って表すことができる.
円筒座標系では,,, はそれぞれ動径,周方向,軸方向を表す.直交座標系では,円筒座標系は次のように定義される.
座標関係(25)を方程式(26)および(27)に代入することによって,物質平衡方程式は以下のように円筒座標系で表すことができる.
モデル内の物質輸送が 軸について回転対称ならば,結果の濃度場 は 方向では不変である.よって,方程式(28)は次のように簡約される.
この場合,この対称特性を使って3D物質輸送問題を2D領域でモデル化することができる.このタイプのモデルは軸対称モデルとして知られている.
球座標系における物質平衡
球座標系では,,, はそれぞれ動径,方位角,極方向を表す.直交座標系では,極座標系は以下のように定義される.
座標関係(29)を方程式(30)および(31)に挿入すると,物質平衡方程式は球座標系で以下のように表すことができる.
用語集
参考文献
1. Fick, A. Über Diffusion. Annalen der Physik (in German), 94 (1): 59–86 (1855).
2. Wolf, E. E. and Alfani, F. Catalysts Deactivation by Coking, Catalysis Reviews: vol 24 329-371 (1982).
3. Calvo, E. G., Arranz, M. A. and Leton, P. Effects of Impurities in the Kinetics of Calcite Decomposition, Thermochimica Acta. 170: 7–11 (1990).
4. Fu, J. C., Hagemeir, C. and Moyer, D. L., An unified mathematical model for diffusion from drug polymer composite tablets, Journal of Biomedical Materials Research: vol. 10, no. 5, pp. 743–758 (1976).
5. Parra-Guevara, D. and Skiba, Y. N. Elements of the mathematical modeling in the control of pollutants emissions, Ecological Modelling: vol. 167, no. 3, pp. 263–275 (2003).
6. Goldstein, R.J. and Cho, H. H. A review of mass transfer measurements using naphthalene sublimation, Experimental Thermal and Fluid Science: vol. 10, no. 4, pp. 416–434 (1995).
7. Cañizares, P., García-Gómez, J., Fernández de Marcos, I., Rodrigo, M. A. and Lobato, J. Measurement of Mass-Transfer Coefficients by an Electrochemical Technique, Journal of Chemical Education: vol. 83, no. 8 (2006).
8. LeVeque, R. J. Numerical Methods for Conservation Laws, Birkhduser (1992).
9. Whitman, G. Walter. The two film theory of gas absorption, International Journal of Heat and Mass Transfer: vol. 5, no. 5, pp. 429-433 (1962).
10. Prausnitz, J. M., Lichtenthaler R. N. and de Azevedo, E. G. Molecular Thermodynamics of Fluid Phase Equilibria 3rd Ed., Prentice Hall PTR, New Jersey (1999).