DirichletEta

DirichletEta[s]

gives the Dirichlet eta function .

Details

  • The Dirichlet eta function is also known as the alternating zeta function.
  • DirichletEta is a mathematical function, suitable for both symbolic and numeric manipulation.
  • For , the Dirichlet eta function is defined as .
  • For certain special arguments, DirichletEta automatically evaluates to exact values.
  • DirichletEta is an entire function with branch cut discontinuities.
  • DirichletEta can be evaluated to arbitrary numerical precision.
  • DirichletEta automatically threads over lists.

Examples

Basic Examples  (2)

Wolfram Research (2014), DirichletEta, Wolfram Language function, https://reference.wolfram.com/language/ref/DirichletEta.html.

Text

Wolfram Research (2014), DirichletEta, Wolfram Language function, https://reference.wolfram.com/language/ref/DirichletEta.html.

BibTeX

@misc{reference.wolfram_2021_dirichleteta, author="Wolfram Research", title="{DirichletEta}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/DirichletEta.html}", note=[Accessed: 31-July-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_dirichleteta, organization={Wolfram Research}, title={DirichletEta}, year={2014}, url={https://reference.wolfram.com/language/ref/DirichletEta.html}, note=[Accessed: 31-July-2021 ]}

CMS

Wolfram Language. 2014. "DirichletEta." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DirichletEta.html.

APA

Wolfram Language. (2014). DirichletEta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DirichletEta.html