DirichletEta
DirichletEta[s]
gives the Dirichlet eta function .
Details
- The Dirichlet eta function is also known as the alternating zeta function.
- DirichletEta is a mathematical function, suitable for both symbolic and numeric manipulation.
- For , the Dirichlet eta function is defined as .
- For certain special arguments, DirichletEta automatically evaluates to exact values.
- DirichletEta is an entire function with branch cut discontinuities.
- DirichletEta can be evaluated to arbitrary numerical precision.
- DirichletEta automatically threads over lists.
- DirichletEta can be used with Interval and CenteredInterval objects. »
Examples
open allclose allScope (6)
DirichletEta is neither non-decreasing nor non-increasing:
DirichletEta is not injective:
DirichletEta is neither non-negative nor non-positive:
DirichletEta is neither convex nor concave:
Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:
Or compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix DirichletEta function using MatrixFunction:
Properties & Relations (1)
Verify the interrelationship among the DirichletEta, DirichletLambda and Zeta functions:
Text
Wolfram Research (2014), DirichletEta, Wolfram Language function, https://reference.wolfram.com/language/ref/DirichletEta.html (updated 2022).
CMS
Wolfram Language. 2014. "DirichletEta." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/DirichletEta.html.
APA
Wolfram Language. (2014). DirichletEta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DirichletEta.html