GraphicsComplex
更多信息和选项

- GraphicsComplex 可用于二维图形和三维图形中.
- GraphicsComplex[{pt1,pt2,…},data] 实际上用相应的数据 pti 替换坐标整数 i.
- GraphicsComplex 提供一种方便的方式来建立网格或简单复合体,其中多边形的顶点被共享.
- 在 Graphics 和 Graphics3D 中,GraphicsComplex 视为一个单一的图形基元.
- 在 GraphicsComplex[pts,data] 里,data 可以是图形基元和指令的任意嵌套列表.
- 可以给出以下选项:
-
ContentSelectable Automatic 是否允许选择内容 VertexColors Automatic 对应于各个 pti 的顶点颜色 VertexNormals Automatic 对应于各个 pti 的顶点法线 VertexTextureCoordinates None 每个 pti 的顶点纹理坐标 - GraphicsComplex[{pt1,pt2,…},data,VertexColors->{c1,c2,…}] 替代Polygon[{pti,ptj,…},VertexColors->{ci,cj,…}] 为 Polygon[{i,j,…}].
- VertexNormals 和 VertexTextureCoordinates 选项的操作方式相同.
- Normal[GraphicsComplex[pts,data]] 替代坐标,以给出图形基元和指令的列表.
范例
打开所有单元关闭所有单元基本范例 (3)常见实例总结
In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-ftsu6s
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-7xmx6
Out[2]=2

In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-oj5cw
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-hebi7
In[3]:=3

✖
https://wolfram.com/xid/0en0dy7dm-73ynw
Out[3]=3

用 PolyhedronData 嵌入:
In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-gzqs93
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-d1dozg

In[3]:=3

✖
https://wolfram.com/xid/0en0dy7dm-cuezch
Out[3]=3

用 PolyhedronData 的属性注释完成同样的事:
In[4]:=4

✖
https://wolfram.com/xid/0en0dy7dm-c46wcn
Out[4]=4

范围 (3)标准用法实例范围调查
任何基本图形的坐标数据可以来自于 GraphicsComplex:
In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-nw645
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-lqiek7
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0en0dy7dm-cq2gmf
Out[3]=3

In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-bcgh3l
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-g59q94
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0en0dy7dm-iskskk
Out[3]=3

在 GraphicsComplex 内的混合指令和基本图形:
In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-j14e4o
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-cscsmj
Out[2]=2

选项 (7)各选项的常用值和功能
ContentSelectable (3)
VertexColors (2)
VertexNormals (1)
应用 (2)用该函数可以解决的问题范例
大多数表面和区域图形产生 GraphicsComplex:
In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-jsguv
Out[1]=1

在这个简单旋转里,您可以使用 GraphicsComplex 进行坐标变换:
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-fwp5w6
Out[2]=2

In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-b1jzb
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-lno4j
Out[2]=2

属性和关系 (4)函数的属性及与其他函数的关联
In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-gbl5s2
应用 Normal 用分裂复合体为双重坐标的基本图形:
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-f33r8z
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0en0dy7dm-bt4b95
Out[3]=3

复合图形可以从 PolyhedronData 中建立:
In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-ftlf8q
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-f68giz
In[3]:=3

✖
https://wolfram.com/xid/0en0dy7dm-i5bfda
Out[3]=3

In[4]:=4

✖
https://wolfram.com/xid/0en0dy7dm-ekk09h
In[5]:=5

✖
https://wolfram.com/xid/0en0dy7dm-f9cm45
Out[5]=5

In[6]:=6

✖
https://wolfram.com/xid/0en0dy7dm-n137pe
Out[6]=6

ExampleData 包括一定数量的三维复合模型:
In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-bnv08a

In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-dp7iq5
In[3]:=3

✖
https://wolfram.com/xid/0en0dy7dm-b0s1pn
Out[3]=3

很多 Import 格式产生 GraphicsComplex:
In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-ctm8yq
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-buvtrp
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0en0dy7dm-3j5dd
Out[3]=3

In[4]:=4

✖
https://wolfram.com/xid/0en0dy7dm-cub1y7
Out[4]=4

巧妙范例 (2)奇妙或有趣的实例
In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-l38plo
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-l5xam8
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0en0dy7dm-dyhgti
In[4]:=4

✖
https://wolfram.com/xid/0en0dy7dm-0d4om
Out[4]=4

In[1]:=1

✖
https://wolfram.com/xid/0en0dy7dm-hqtjn8
In[2]:=2

✖
https://wolfram.com/xid/0en0dy7dm-k6cfa9
Out[2]=2

Wolfram Research (2007),GraphicsComplex,Wolfram 语言函数,https://reference.wolfram.com/language/ref/GraphicsComplex.html.
✖
Wolfram Research (2007),GraphicsComplex,Wolfram 语言函数,https://reference.wolfram.com/language/ref/GraphicsComplex.html.
文本
Wolfram Research (2007),GraphicsComplex,Wolfram 语言函数,https://reference.wolfram.com/language/ref/GraphicsComplex.html.
✖
Wolfram Research (2007),GraphicsComplex,Wolfram 语言函数,https://reference.wolfram.com/language/ref/GraphicsComplex.html.
CMS
Wolfram 语言. 2007. "GraphicsComplex." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/GraphicsComplex.html.
✖
Wolfram 语言. 2007. "GraphicsComplex." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/GraphicsComplex.html.
APA
Wolfram 语言. (2007). GraphicsComplex. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/GraphicsComplex.html 年
✖
Wolfram 语言. (2007). GraphicsComplex. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/GraphicsComplex.html 年
BibTeX
✖
@misc{reference.wolfram_2025_graphicscomplex, author="Wolfram Research", title="{GraphicsComplex}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/GraphicsComplex.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_graphicscomplex, organization={Wolfram Research}, title={GraphicsComplex}, year={2007}, url={https://reference.wolfram.com/language/ref/GraphicsComplex.html}, note=[Accessed: 04-April-2025
]}