WOLFRAM

RadonTransform[expr,{x,y},{p,ϕ}]

gives the Radon transform of expr.

Details and Options

  • The Radon transform of a function is defined to be .
  • Geometrically, the Radon transform represents the integral of along a line given in normal form by the equation , with -<p< and -π/2<ϕ<π/2.
  • The following options can be given:
  • Assumptions $Assumptionsassumptions on parameters
    GenerateConditions Falsewhether to generate results that involve conditions on parameters
    MethodAutomaticwhat method to use
  • In TraditionalForm, RadonTransform is output using TemplateBox[{{f, (, {x, ,, y}, )}, x, y, p, phi}, RadonTransform].

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Compute the Radon transform of a function:

Out[1]=1

Plot the function along with the transform:

Out[2]=2

Scope  (10)Survey of the scope of standard use cases

Basic Uses  (2)

Compute the Radon transform of a function for symbolic parameter values:

Out[1]=1

Use exact values for the parameters:

Out[2]=2

Use inexact values for the parameters:

Out[3]=3

Obtain the condition for validity of a Radon transform:

Out[1]=1

Specify assumptions:

Out[2]=2

Gaussian Functions  (5)

Radon transform of a circular Gaussian function:

Out[1]=1

Plot the function along with the transform:

Out[2]=2

Radon transform of an elliptic Gaussian function:

Out[1]=1

Plot the function along with the transform:

Out[2]=2

Product of a polynomial with a Gaussian function:

Out[1]=1
Out[2]=2

Product of Hermite polynomials and a Gaussian function:

Out[1]=1
Out[2]=2

Products of trigonometric functions with Gaussian functions:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

Piecewise and Generalized Functions  (3)

Radon transform of the characteristic function for the unit disk:

Out[3]=3
Out[4]=4

Products of polynomials with the characteristic function for the unit disk:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

Radon transforms for expressions involving DiracDelta:

Out[1]=1
Out[2]=2

Options  (2)Common values & functionality for each option

Assumptions  (1)

Specify assumptions:

Out[1]=1
Out[2]=2

GenerateConditions  (1)

Generate conditions for the validity of the result:

Out[1]=1
Out[1]=1

Applications  (2)Sample problems that can be solved with this function

Compute the symbolic Radon transform for the characteristic function of a disk:

Out[3]=3
Out[4]=4

Obtain the same result using Radon:

Out[4]=4

Use the Radon transform to solve a Poisson equation:

Apply RadonTransform to the equation:

Out[2]=2

Solve the ordinary differential equation using DSolveValue:

Out[3]=3

Set the arbitrary constants in the solution to 0:

Out[4]=4

Obtain the solution for the original equation using InverseRadonTransform:

Out[5]=5

Verify the solution:

Out[6]=6

Plot the solution:

Out[7]=7

Properties & Relations  (10)Properties of the function, and connections to other functions

RadonTransform computes the integral :

Out[1]=1

Obtain the same result using Integrate:

Out[3]=3

RadonTransform and InverseRadonTransform are mutual inverses:

Out[1]=1
Out[2]=2

RadonTransform is a linear operator:

Out[1]=1

The shifting property for RadonTransform:

Out[3]=3

The symmetry property for RadonTransform:

Express the Radon transform of in terms of a unit vector:

Out[3]=3

Verify the symmetry property:

Out[4]=4

The homogeneity property for RadonTransform:

Express the Radon transform of in terms of a unit vector:

Out[3]=3

Verify the homogeneity property:

Out[5]=5

The scaling property for RadonTransform:

Express the Radon transform of in terms of a unit vector:

Out[3]=3

Express the Radon transform of in terms of a unit vector:

Out[4]=4

Verify the scaling property:

Out[5]=5

RadonTransform of derivatives:

Out[1]=1
Out[2]=2

RadonTransform of the Laplacian:

Out[1]=1

RadonTransform can be computed using Fourier transforms:

Compute the Fourier transform of f in polar coordinates:

Out[2]=2

Compute the inverse Fourier transform to obtain the Radon transform:

Out[3]=3

Obtain the same result directly using RadonTransform:

Out[4]=4

Neat Examples  (1)Surprising or curious use cases

Create a table of basic Radon transforms:

Wolfram Research (2017), RadonTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/RadonTransform.html.
Wolfram Research (2017), RadonTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/RadonTransform.html.

Text

Wolfram Research (2017), RadonTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/RadonTransform.html.

Wolfram Research (2017), RadonTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/RadonTransform.html.

CMS

Wolfram Language. 2017. "RadonTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RadonTransform.html.

Wolfram Language. 2017. "RadonTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RadonTransform.html.

APA

Wolfram Language. (2017). RadonTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RadonTransform.html

Wolfram Language. (2017). RadonTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RadonTransform.html

BibTeX

@misc{reference.wolfram_2025_radontransform, author="Wolfram Research", title="{RadonTransform}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/RadonTransform.html}", note=[Accessed: 18-April-2025 ]}

@misc{reference.wolfram_2025_radontransform, author="Wolfram Research", title="{RadonTransform}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/RadonTransform.html}", note=[Accessed: 18-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_radontransform, organization={Wolfram Research}, title={RadonTransform}, year={2017}, url={https://reference.wolfram.com/language/ref/RadonTransform.html}, note=[Accessed: 18-April-2025 ]}

@online{reference.wolfram_2025_radontransform, organization={Wolfram Research}, title={RadonTransform}, year={2017}, url={https://reference.wolfram.com/language/ref/RadonTransform.html}, note=[Accessed: 18-April-2025 ]}