RadonTransform
✖
RadonTransform
Details and Options

- The Radon transform of a function
is defined to be
.
- Geometrically, the Radon transform represents the integral of
along a line
given in normal form by the equation
, with -∞<p<∞ and -π/2<ϕ<π/2.
- The following options can be given:
-
Assumptions $Assumptions assumptions on parameters GenerateConditions False whether to generate results that involve conditions on parameters Method Automatic what method to use - In TraditionalForm, RadonTransform is output using
.

Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Scope (10)Survey of the scope of standard use cases
Basic Uses (2)
Compute the Radon transform of a function for symbolic parameter values:

https://wolfram.com/xid/0n4q94l0xaq-qbzrq

Use exact values for the parameters:

https://wolfram.com/xid/0n4q94l0xaq-ieerd4

Use inexact values for the parameters:

https://wolfram.com/xid/0n4q94l0xaq-h993gr

Obtain the condition for validity of a Radon transform:

https://wolfram.com/xid/0n4q94l0xaq-31cta


https://wolfram.com/xid/0n4q94l0xaq-jxia6n

Gaussian Functions (5)
Radon transform of a circular Gaussian function:

https://wolfram.com/xid/0n4q94l0xaq-m2fi0h

Plot the function along with the transform:

https://wolfram.com/xid/0n4q94l0xaq-prve1g

Radon transform of an elliptic Gaussian function:

https://wolfram.com/xid/0n4q94l0xaq-fhbmsm

Plot the function along with the transform:

https://wolfram.com/xid/0n4q94l0xaq-b2ds95

Product of a polynomial with a Gaussian function:

https://wolfram.com/xid/0n4q94l0xaq-c7mytc


https://wolfram.com/xid/0n4q94l0xaq-bcqjes

Product of Hermite polynomials and a Gaussian function:

https://wolfram.com/xid/0n4q94l0xaq-jgkko3


https://wolfram.com/xid/0n4q94l0xaq-6rv16

Products of trigonometric functions with Gaussian functions:

https://wolfram.com/xid/0n4q94l0xaq-n664eb


https://wolfram.com/xid/0n4q94l0xaq-bsx98x


https://wolfram.com/xid/0n4q94l0xaq-ibjcpe


https://wolfram.com/xid/0n4q94l0xaq-d7ncr

Piecewise and Generalized Functions (3)
Radon transform of the characteristic function for the unit disk:

https://wolfram.com/xid/0n4q94l0xaq-ef55i3


https://wolfram.com/xid/0n4q94l0xaq-bmssmh

Products of polynomials with the characteristic function for the unit disk:

https://wolfram.com/xid/0n4q94l0xaq-cyzo4c


https://wolfram.com/xid/0n4q94l0xaq-nsydu


https://wolfram.com/xid/0n4q94l0xaq-dlqzy3


https://wolfram.com/xid/0n4q94l0xaq-f1u6yi

Radon transforms for expressions involving DiracDelta:

https://wolfram.com/xid/0n4q94l0xaq-93vbt


https://wolfram.com/xid/0n4q94l0xaq-cm9ww0

Options (2)Common values & functionality for each option
Assumptions (1)
Applications (2)Sample problems that can be solved with this function
Compute the symbolic Radon transform for the characteristic function of a disk:

https://wolfram.com/xid/0n4q94l0xaq-hdvkhg


https://wolfram.com/xid/0n4q94l0xaq-hb3dmy

Obtain the same result using Radon:

https://wolfram.com/xid/0n4q94l0xaq-gju1a

https://wolfram.com/xid/0n4q94l0xaq-jwqwr4

Use the Radon transform to solve a Poisson equation:

https://wolfram.com/xid/0n4q94l0xaq-eg8s6u
Apply RadonTransform to the equation:

https://wolfram.com/xid/0n4q94l0xaq-ct0d6v

Solve the ordinary differential equation using DSolveValue:

https://wolfram.com/xid/0n4q94l0xaq-ky7r2d

Set the arbitrary constants in the solution to 0:

https://wolfram.com/xid/0n4q94l0xaq-dlrt5p

Obtain the solution for the original equation using InverseRadonTransform:

https://wolfram.com/xid/0n4q94l0xaq-huk5g1


https://wolfram.com/xid/0n4q94l0xaq-gabztc


https://wolfram.com/xid/0n4q94l0xaq-gzd1ge

Properties & Relations (10)Properties of the function, and connections to other functions
RadonTransform computes the integral :

https://wolfram.com/xid/0n4q94l0xaq-b6ht2u

Obtain the same result using Integrate:

https://wolfram.com/xid/0n4q94l0xaq-9z2j4

https://wolfram.com/xid/0n4q94l0xaq-pftzeq

RadonTransform and InverseRadonTransform are mutual inverses:

https://wolfram.com/xid/0n4q94l0xaq-ey81a0


https://wolfram.com/xid/0n4q94l0xaq-f0lrqc

RadonTransform is a linear operator:

https://wolfram.com/xid/0n4q94l0xaq-csnlc

The shifting property for RadonTransform:

https://wolfram.com/xid/0n4q94l0xaq-lgnp1t

https://wolfram.com/xid/0n4q94l0xaq-bcvg0z

https://wolfram.com/xid/0n4q94l0xaq-iwmj7z

The symmetry property for RadonTransform:

https://wolfram.com/xid/0n4q94l0xaq-cfvdwk

https://wolfram.com/xid/0n4q94l0xaq-fivbpl
Express the Radon transform of in terms of a unit vector:

https://wolfram.com/xid/0n4q94l0xaq-oekbq


https://wolfram.com/xid/0n4q94l0xaq-ha37ep

The homogeneity property for RadonTransform:

https://wolfram.com/xid/0n4q94l0xaq-d93mhm

https://wolfram.com/xid/0n4q94l0xaq-j7c37j
Express the Radon transform of in terms of a unit vector:

https://wolfram.com/xid/0n4q94l0xaq-jqaaax

Verify the homogeneity property:

https://wolfram.com/xid/0n4q94l0xaq-bthe14

https://wolfram.com/xid/0n4q94l0xaq-jh681g

The scaling property for RadonTransform:

https://wolfram.com/xid/0n4q94l0xaq-c97bf

https://wolfram.com/xid/0n4q94l0xaq-eh49oo
Express the Radon transform of in terms of a unit vector:

https://wolfram.com/xid/0n4q94l0xaq-lq6h0

Express the Radon transform of in terms of a unit vector:

https://wolfram.com/xid/0n4q94l0xaq-bfhyrf


https://wolfram.com/xid/0n4q94l0xaq-gqr09

RadonTransform of derivatives:

https://wolfram.com/xid/0n4q94l0xaq-ihv0f7


https://wolfram.com/xid/0n4q94l0xaq-bopv7y

RadonTransform of the Laplacian:

https://wolfram.com/xid/0n4q94l0xaq-cwymlo

RadonTransform can be computed using Fourier transforms:

https://wolfram.com/xid/0n4q94l0xaq-1zbsk
Compute the Fourier transform of f in polar coordinates:

https://wolfram.com/xid/0n4q94l0xaq-hwlt02

Compute the inverse Fourier transform to obtain the Radon transform:

https://wolfram.com/xid/0n4q94l0xaq-bk5b6r

Obtain the same result directly using RadonTransform:

https://wolfram.com/xid/0n4q94l0xaq-c8mvr0

Wolfram Research (2017), RadonTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/RadonTransform.html.
Text
Wolfram Research (2017), RadonTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/RadonTransform.html.
Wolfram Research (2017), RadonTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/RadonTransform.html.
CMS
Wolfram Language. 2017. "RadonTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RadonTransform.html.
Wolfram Language. 2017. "RadonTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RadonTransform.html.
APA
Wolfram Language. (2017). RadonTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RadonTransform.html
Wolfram Language. (2017). RadonTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RadonTransform.html
BibTeX
@misc{reference.wolfram_2025_radontransform, author="Wolfram Research", title="{RadonTransform}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/RadonTransform.html}", note=[Accessed: 18-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_radontransform, organization={Wolfram Research}, title={RadonTransform}, year={2017}, url={https://reference.wolfram.com/language/ref/RadonTransform.html}, note=[Accessed: 18-April-2025
]}