ShortestCurveDistance[reg,s,t]
gives the minimal distance between two points s and t on the geometric region reg.


ShortestCurveDistance
ShortestCurveDistance[reg,s,t]
gives the minimal distance between two points s and t on the geometric region reg.
Details

- ShortestCurveDistance is also known as geodesic distance.
- ShortestCurveDistance measures how close two points are to each other on a line, curve, polygon, surface, polyhedron, mesh and more.
- ShortestCurveDistance[reg,s,t] gives the length of the shortest curve between s and t on the geometric region reg.
- ShortestCurveDistance[reg,s,t] is effectively given by ArcLength[FindShortestCurve[reg,s,t]].
- The following options can be given:
-
AccuracyGoal Automatic digits of absolute accurary sought Assumptions $Assumptions assumptions to make about parameters GenerateConditions Automatic whether to generate conditions on parameters PerformanceGoal $PerformanceGoal aspects of performance to try to optimize PrecisionGoal Automatic digits of precision sought WorkingPrecision Automatic the precision used in internal computations

Examples
open all close allBasic Examples (1)
Scope (12)
Special Regions (3)
Formula Regions (2)
Mesh Regions (2)
Find the minimal distance on a 1D BoundaryMeshRegion:
Find the minimal distance on a 1D MeshRegion:
Derived Regions (3)
Geographic Regions (2)
Polygons with GeoPosition:
Polygons with GeoPositionXYZ:
Polygons with GeoPositionENU:
Polygons with GeoGridPosition:
Properties & Relations (1)
ShortestCurveDistance is the arc length of FindShortestCurve:
Related Guides
History
Text
Wolfram Research (2025), ShortestCurveDistance, Wolfram Language function, https://reference.wolfram.com/language/ref/ShortestCurveDistance.html.
CMS
Wolfram Language. 2025. "ShortestCurveDistance." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ShortestCurveDistance.html.
APA
Wolfram Language. (2025). ShortestCurveDistance. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ShortestCurveDistance.html
BibTeX
@misc{reference.wolfram_2025_shortestcurvedistance, author="Wolfram Research", title="{ShortestCurveDistance}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/ShortestCurveDistance.html}", note=[Accessed: 04-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_shortestcurvedistance, organization={Wolfram Research}, title={ShortestCurveDistance}, year={2025}, url={https://reference.wolfram.com/language/ref/ShortestCurveDistance.html}, note=[Accessed: 04-August-2025]}