WavePDEComponent

WavePDEComponent[vars,pars]

yields a wave equation PDE term with model variables vars and model parameters pars.

Details

  • WavePDEComponent returns a sum of differential operators to be used as a part of partial differential equations
  • WavePDEComponent can be used to model wave equations with dependent variable , independent variables and time variable .
  • Time-dependent model variables vars are vars={u[t,x1,,xn],t,{x1,,xn}}.
  • The WavePDEComponent is based on a diffusion term:
  • (partialu^2)/(partialt^2)- del .(c^2 del u(x))^(︷^(  diffusion term   ))

  • The wave PDE term is realized as a DiffusionPDETerm with as a diffusion coefficient, for a constant resulting in .
  • The following model parameters pars can be given:
  • parameterdefaultsymbol
    "WaveCoefficient"1
  • The source term coefficient is a scalar.
  • The source term coefficient cannot depend on space.
  • If the WavePDEComponent depends on parameters that are specified in the association pars as ,keypi,pivi,], the parameters are replaced with .

Examples

Basic Examples  (3)

Define a wave PDE component:

Activate the component:

Define a wave PDE component with a symbolic coefficient:

Find the eigenvalues of a wave equation:

Wolfram Research (2020), WavePDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/WavePDEComponent.html.

Text

Wolfram Research (2020), WavePDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/WavePDEComponent.html.

BibTeX

@misc{reference.wolfram_2021_wavepdecomponent, author="Wolfram Research", title="{WavePDEComponent}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/WavePDEComponent.html}", note=[Accessed: 27-November-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_wavepdecomponent, organization={Wolfram Research}, title={WavePDEComponent}, year={2020}, url={https://reference.wolfram.com/language/ref/WavePDEComponent.html}, note=[Accessed: 27-November-2021 ]}

CMS

Wolfram Language. 2020. "WavePDEComponent." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WavePDEComponent.html.

APA

Wolfram Language. (2020). WavePDEComponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WavePDEComponent.html