GeometricTransformation
✖
GeometricTransformation
represents the result of applying the transformation function tfun to the geometric objects corresponding to the primitives g.
transforms geometric objects in g by effectively replacing every point r by m.r.
represents multiple copies of g transformed by a collection of transformations.
Details and Options

- GeometricTransformation[g,…] remains unchanged under evaluation, but affects how g is rendered.
- GeometricTransformation works on lists of graphics primitives and directives in 2D and 3D.
- GeometricTransformation[g,{m,v}] effectively applies an affine transform to g.
- GeometricTransformation[g,{{mxx,myx},{mxy,myy}}] transforms the unit vectors
and
to {mxx,mxy} and {myx,myy}, respectively.
- For different spec, GeometricTransformation[g,{m,spec}] leaves fixed the following special points on the bounding box of g:
-
Center center Left midpoint of the left side Right midpoint of the right side Top midpoint of the top Bottom midpoint of the bottom Front midpoint of the front Back midpoint of the back {Left,Top}, etc. corners - For objects specified with scaled coordinates Scaled[{x,y}], GeometricTransformation effectively applies its transformation to the corresponding ordinary coordinates.
- Normal[expr] if possible replaces all GeometricTransformation[gi,…] constructs by versions of the gi in which the coordinates have explicitly been transformed.
- The following option can be given:
-
ContentSelectable Automatic whether to allow contents to be selected - For matrices m1 and m2, GeometricTransformation[GeometricTransformation[g,m1],m2] is equivalent to GeometricTransformation[g,m2.m1].
Examples
open allclose allBasic Examples (3)Summary of the most common use cases

https://wolfram.com/xid/0dc16foc4fjq-bqzeyc


https://wolfram.com/xid/0dc16foc4fjq-cc647u

Multiple transforms can be applied to the same object:

https://wolfram.com/xid/0dc16foc4fjq-e7l85t


https://wolfram.com/xid/0dc16foc4fjq-by83yw

Scope (5)Survey of the scope of standard use cases
Transformation applied to a 2D shape:

https://wolfram.com/xid/0dc16foc4fjq-cp0s4d

https://wolfram.com/xid/0dc16foc4fjq-bx2faq

Transformation applied to a 3D shape:

https://wolfram.com/xid/0dc16foc4fjq-guhj3r

https://wolfram.com/xid/0dc16foc4fjq-cikv87

Objects with scaled coordinates:

https://wolfram.com/xid/0dc16foc4fjq-ccfue9

Keep the rightmost point of the circle fixed:

https://wolfram.com/xid/0dc16foc4fjq-fb0o2b

Create nested transformations:

https://wolfram.com/xid/0dc16foc4fjq-dbo3du

Properties & Relations (2)Properties of the function, and connections to other functions
Using {m,v} as the second argument is the same as using AffineTransform[{m,v}]:

https://wolfram.com/xid/0dc16foc4fjq-0rx4j

When possible, Normal will perform the transformations explicitly:

https://wolfram.com/xid/0dc16foc4fjq-lgap6l

Wolfram Research (2007), GeometricTransformation, Wolfram Language function, https://reference.wolfram.com/language/ref/GeometricTransformation.html (updated 2010).
Text
Wolfram Research (2007), GeometricTransformation, Wolfram Language function, https://reference.wolfram.com/language/ref/GeometricTransformation.html (updated 2010).
Wolfram Research (2007), GeometricTransformation, Wolfram Language function, https://reference.wolfram.com/language/ref/GeometricTransformation.html (updated 2010).
CMS
Wolfram Language. 2007. "GeometricTransformation." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2010. https://reference.wolfram.com/language/ref/GeometricTransformation.html.
Wolfram Language. 2007. "GeometricTransformation." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2010. https://reference.wolfram.com/language/ref/GeometricTransformation.html.
APA
Wolfram Language. (2007). GeometricTransformation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GeometricTransformation.html
Wolfram Language. (2007). GeometricTransformation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GeometricTransformation.html
BibTeX
@misc{reference.wolfram_2025_geometrictransformation, author="Wolfram Research", title="{GeometricTransformation}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/GeometricTransformation.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_geometrictransformation, organization={Wolfram Research}, title={GeometricTransformation}, year={2010}, url={https://reference.wolfram.com/language/ref/GeometricTransformation.html}, note=[Accessed: 29-March-2025
]}