RootMeanSquare
✖
RootMeanSquare
Details

- RootMeanSquare measures scale of data or distributions.
- RootMeanSquare[list] gives the square root of the second sample moment.
- For the list {x1,x2,…,xn}, the root mean square is given by
.
- RootMeanSquare handles both numerical and symbolic data.
- RootMeanSquare[{{x1,y1,…},{x2,y2,…},…}] gives {RootMeanSquare[{x1,x2,…}],RootMeanSquare[{y1,y2,…}]}.
- RootMeanSquare[dist] is equivalent to Sqrt[Expectation[x2,xdist]].
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
RootMeanSquare of a list:

https://wolfram.com/xid/0g7itfcdyf2-xif

RootMeanSquare of columns of a matrix:

https://wolfram.com/xid/0g7itfcdyf2-vu6sr

RootMeanSquare of a parametric distribution:

https://wolfram.com/xid/0g7itfcdyf2-n3bzeg

Scope (14)Survey of the scope of standard use cases
Data (10)
Exact input yields exact output:

https://wolfram.com/xid/0g7itfcdyf2-ug7y2


https://wolfram.com/xid/0g7itfcdyf2-bcry2t

Approximate input yields approximate output:

https://wolfram.com/xid/0g7itfcdyf2-ksx55


https://wolfram.com/xid/0g7itfcdyf2-d02ofx

RootMeanSquare for a matrix gives columnwise means:

https://wolfram.com/xid/0g7itfcdyf2-ezu2uz


https://wolfram.com/xid/0g7itfcdyf2-nknun


https://wolfram.com/xid/0g7itfcdyf2-ma3v2m

SparseArray data can be used just like dense arrays:

https://wolfram.com/xid/0g7itfcdyf2-n691tv


https://wolfram.com/xid/0g7itfcdyf2-drrysl

Compute results for a SparseArray:

https://wolfram.com/xid/0g7itfcdyf2-l4ct3


https://wolfram.com/xid/0g7itfcdyf2-d6csj0

RootMeanSquare for WeightedData:

https://wolfram.com/xid/0g7itfcdyf2-d0wc9z


https://wolfram.com/xid/0g7itfcdyf2-f1vfw

https://wolfram.com/xid/0g7itfcdyf2-qyv0h

RootMeanSquare for EventData:

https://wolfram.com/xid/0g7itfcdyf2-e67u14

https://wolfram.com/xid/0g7itfcdyf2-or2nrz

RootMeanSquare for TimeSeries:

https://wolfram.com/xid/0g7itfcdyf2-hf056t

The root mean square depends only on the values:

https://wolfram.com/xid/0g7itfcdyf2-ikztk4

RootMeanSquare for data involving quantities:

https://wolfram.com/xid/0g7itfcdyf2-jopin9


https://wolfram.com/xid/0g7itfcdyf2-e8c21s

Distributions and Processes (4)
Find the RootMeanSquare for univariate distributions:

https://wolfram.com/xid/0g7itfcdyf2-rxz55


https://wolfram.com/xid/0g7itfcdyf2-hbq28j


https://wolfram.com/xid/0g7itfcdyf2-ek075b


https://wolfram.com/xid/0g7itfcdyf2-lzwoz3

RootMeanSquare for derived distributions:

https://wolfram.com/xid/0g7itfcdyf2-rgc72x


https://wolfram.com/xid/0g7itfcdyf2-byqvvz


https://wolfram.com/xid/0g7itfcdyf2-215ry

https://wolfram.com/xid/0g7itfcdyf2-fq5ptk

RootMeanSquare for distributions with quantities:

https://wolfram.com/xid/0g7itfcdyf2-dqsioj


https://wolfram.com/xid/0g7itfcdyf2-b53jwg

RootMeanSquare for a random process:

https://wolfram.com/xid/0g7itfcdyf2-fugn


https://wolfram.com/xid/0g7itfcdyf2-g9pmgp

Applications (3)Sample problems that can be solved with this function
Root mean square error for a linear fit:

https://wolfram.com/xid/0g7itfcdyf2-lqzjie

https://wolfram.com/xid/0g7itfcdyf2-p1u03


https://wolfram.com/xid/0g7itfcdyf2-cab9e7


https://wolfram.com/xid/0g7itfcdyf2-cwptf9

https://wolfram.com/xid/0g7itfcdyf2-dkujrt


https://wolfram.com/xid/0g7itfcdyf2-yv2c2

Compute the root mean square value of the sample:

https://wolfram.com/xid/0g7itfcdyf2-csnxk


https://wolfram.com/xid/0g7itfcdyf2-ekvqot


https://wolfram.com/xid/0g7itfcdyf2-c3rp5t

Find the root mean square value for the heights of children in a class:

https://wolfram.com/xid/0g7itfcdyf2-cevfij

https://wolfram.com/xid/0g7itfcdyf2-fllmtw


https://wolfram.com/xid/0g7itfcdyf2-celepo


https://wolfram.com/xid/0g7itfcdyf2-cny2bx

Properties & Relations (7)Properties of the function, and connections to other functions
RootMeanSquare is the square root of the Mean of the data squared:

https://wolfram.com/xid/0g7itfcdyf2-793v1

https://wolfram.com/xid/0g7itfcdyf2-b9x4up


https://wolfram.com/xid/0g7itfcdyf2-bhsxlb

RootMeanSquare is equivalent to a scaled Norm:

https://wolfram.com/xid/0g7itfcdyf2-jxw4y8

https://wolfram.com/xid/0g7itfcdyf2-drqfrx


https://wolfram.com/xid/0g7itfcdyf2-cuwc0b

RootMeanSquare of deviations is equivalent to a scaled StandardDeviation:

https://wolfram.com/xid/0g7itfcdyf2-m0xfm

https://wolfram.com/xid/0g7itfcdyf2-hh6mz4


https://wolfram.com/xid/0g7itfcdyf2-i5cfjy

RootMeanSquare of deviations is the square root of a CentralMoment:

https://wolfram.com/xid/0g7itfcdyf2-dso2q7

https://wolfram.com/xid/0g7itfcdyf2-vy95m


https://wolfram.com/xid/0g7itfcdyf2-hfsstq

RootMeanSquare is a scaled EuclideanDistance from the Mean:

https://wolfram.com/xid/0g7itfcdyf2-hx9oab

https://wolfram.com/xid/0g7itfcdyf2-cg5jg0


https://wolfram.com/xid/0g7itfcdyf2-pf9xkh


https://wolfram.com/xid/0g7itfcdyf2-zp24k

RootMeanSquare of a random variable is the square root of an Expectation:

https://wolfram.com/xid/0g7itfcdyf2-c5emif

https://wolfram.com/xid/0g7itfcdyf2-cl5rpb


https://wolfram.com/xid/0g7itfcdyf2-ekl2fe

RootMeanSquare is a measure of scale:

https://wolfram.com/xid/0g7itfcdyf2-bhnrki

https://wolfram.com/xid/0g7itfcdyf2-t94no


https://wolfram.com/xid/0g7itfcdyf2-o9323q

Wolfram Research (2007), RootMeanSquare, Wolfram Language function, https://reference.wolfram.com/language/ref/RootMeanSquare.html (updated 2017).
Text
Wolfram Research (2007), RootMeanSquare, Wolfram Language function, https://reference.wolfram.com/language/ref/RootMeanSquare.html (updated 2017).
Wolfram Research (2007), RootMeanSquare, Wolfram Language function, https://reference.wolfram.com/language/ref/RootMeanSquare.html (updated 2017).
CMS
Wolfram Language. 2007. "RootMeanSquare." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/RootMeanSquare.html.
Wolfram Language. 2007. "RootMeanSquare." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/RootMeanSquare.html.
APA
Wolfram Language. (2007). RootMeanSquare. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RootMeanSquare.html
Wolfram Language. (2007). RootMeanSquare. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RootMeanSquare.html
BibTeX
@misc{reference.wolfram_2025_rootmeansquare, author="Wolfram Research", title="{RootMeanSquare}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/RootMeanSquare.html}", note=[Accessed: 06-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_rootmeansquare, organization={Wolfram Research}, title={RootMeanSquare}, year={2017}, url={https://reference.wolfram.com/language/ref/RootMeanSquare.html}, note=[Accessed: 06-April-2025
]}