WOLFRAM

convolves data with a Laplacian of Gaussian kernel of pixel radius r.

convolves data with a Laplacian of Gaussian kernel of radius r and standard deviation σ.

Details and Options

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Filter a color image:

Out[75]=75

Apply the LoG filter to a 3D image:

Out[1]=1

Laplacian of Gaussian (LoG) of a list:

Out[1]=1

Scope  (8)Survey of the scope of standard use cases

Data  (4)

Laplacian of Gaussian filtering of a numeric matrix:

Filter a TimeSeries object:

Out[1]=1

Filter an Audio signal:

Out[2]=2
Out[3]=3

Laplacian of Gaussian applied to a grayscale image:

Out[1]=1

Parameters  (4)

Laplacian of Gaussian filtering of a step sequence:

Out[89]=89

Use a larger radius:

Out[90]=90

Apply the Laplacian of Gaussian filter in the vertical direction only:

Out[1]=1

Use different radii in the vertical direction:

Out[2]=2

Laplacian of Gaussian derivative of a 3D image in the vertical direction only:

Out[1]=1

Filtering of the horizontal planes only:

Out[2]=2

The default standard deviation is :

Out[1]=1

Vary the standard deviation:

Out[2]=2

Options  (7)Common values & functionality for each option

Method  (1)

By default, the method "Bessel" is used to obtain the filter coefficients:

Out[157]=157

Use the method "Gaussian":

Out[158]=158

Padding  (2)

LaplacianGaussianFilter using different padding methods:

Out[430]=430

Padding->None normally returns an image smaller than the input image:

Out[1]=1

Standardized  (1)

The default setting is True:

Out[65]=65

Use Standardized->False:

Out[66]=66

WorkingPrecision  (3)

MachinePrecision is used by default with integer arrays:

Out[63]=63

Perform an exact computation instead:

Out[64]=64

With real arrays, by default, the precision of the input is used:

Out[1]=1

Specify the precision to use:

Out[2]=2

WorkingPrecision is ignored when filtering images:

Out[1]=1

An image of a real type is always returned:

Out[2]=2

Applications  (4)Sample problems that can be solved with this function

Detect edges by finding the zero crossings of a LoG filtered image:

Out[135]=135

Segment an image by applying a LoG filter to the output of a distance transform:

Out[1]=1

Use LaplacianGaussianFilter to denoise an audio signal:

Out[1]=1
Out[2]=2

Get borders from a colored map:

Out[1]=1

Properties & Relations  (6)Properties of the function, and connections to other functions

LaplacianGaussianFilter is a linear filter:

Out[80]=80

LaplacianGaussianFilter is the result of a convolution:

Out[1]=1

Perform LaplacianGaussianFilter using GaussianFilter:

Out[1]=1

Impulse responses of Laplacian of Gaussian filter for selected radii:

Out[1]=1

Impulse responses of Laplacian of Gaussian filter for selected standard deviations:

Out[1]=1

Filtering of a binary image gives a real-valued image:

Out[1]=1
Out[2]=2
Out[3]=3
Wolfram Research (2008), LaplacianGaussianFilter, Wolfram Language function, https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html (updated 2016).
Wolfram Research (2008), LaplacianGaussianFilter, Wolfram Language function, https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html (updated 2016).

Text

Wolfram Research (2008), LaplacianGaussianFilter, Wolfram Language function, https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html (updated 2016).

Wolfram Research (2008), LaplacianGaussianFilter, Wolfram Language function, https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html (updated 2016).

CMS

Wolfram Language. 2008. "LaplacianGaussianFilter." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html.

Wolfram Language. 2008. "LaplacianGaussianFilter." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html.

APA

Wolfram Language. (2008). LaplacianGaussianFilter. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html

Wolfram Language. (2008). LaplacianGaussianFilter. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html

BibTeX

@misc{reference.wolfram_2025_laplaciangaussianfilter, author="Wolfram Research", title="{LaplacianGaussianFilter}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html}", note=[Accessed: 30-April-2025 ]}

@misc{reference.wolfram_2025_laplaciangaussianfilter, author="Wolfram Research", title="{LaplacianGaussianFilter}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html}", note=[Accessed: 30-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_laplaciangaussianfilter, organization={Wolfram Research}, title={LaplacianGaussianFilter}, year={2016}, url={https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html}, note=[Accessed: 30-April-2025 ]}

@online{reference.wolfram_2025_laplaciangaussianfilter, organization={Wolfram Research}, title={LaplacianGaussianFilter}, year={2016}, url={https://reference.wolfram.com/language/ref/LaplacianGaussianFilter.html}, note=[Accessed: 30-April-2025 ]}