gives the MittagLeffler function .


gives the generalized MittagLeffler function .


  • MittagLefflerE is a mathematical function, suitable for both symbolic and numerical manipulation.
  • MittagLefflerE allows alpha to be any positive real number.
  • Generalized MittagLeffler function is an entire function of given by its defining series E_(alpha,beta)(z)=sum_(k=0)^inftyz^k/TemplateBox[{{{alpha,  , k}, +, beta}}, Gamma].
  • MittagLeffler function is equivalent to .


open allclose all

Basic Examples  (5)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity:

Scope  (19)

Numerical Evaluation  (4)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number input:

Evaluate efficiently at high precision:

Specific Values  (4)

Simple exact values are generated automatically:

Evaluate symbolically:

Values at infinity:

Find a value of x for which MittagLefflerE[1/2,x]=0.5:

Visualization  (3)

Plot the MittagLefflerE function for noninteger orders:

Plot MittagLefflerE function for integer orders:

Plot the real part of TemplateBox[{2, {x, +, {i,  , y}}}, MittagLefflerE]:

Plot the imaginary part of TemplateBox[{2, {x, +, {i,  , y}}}, MittagLefflerE]:

Function Properties  (4)

Real domain of MittagLefflerE:

Complex domain of MittagLefflerE:

The function range of MittagLefflerE:

The range for complex values:

MittagLefflerE has the mirror property TemplateBox[{1, {z, }}, MittagLefflerE]=TemplateBox[{1, z}, MittagLefflerE]:

MittagLefflerE threads elementwise over lists:

Differentiation  (2)

First derivatives with respect to z:

Higher derivatives with respect to z:

Plot the higher derivatives with respect to z when a=1/4:

Series Expansions  (2)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

Taylor expansion at a generic point:

Applications  (1)

Define a MittagLeffler random variate for :

A MittagLeffler random variate is related to the positive stable random variate:

Generate random variates and compare the histogram to the distribution density:

Properties & Relations  (2)

The MittagLeffler function is closed under differentiation:

The MittagLeffler function for integer parameter satisfies a simple differential equation:

Verify for several integer parameters:

Wolfram Research (2012), MittagLefflerE, Wolfram Language function,


Wolfram Research (2012), MittagLefflerE, Wolfram Language function,


@misc{reference.wolfram_2020_mittaglefflere, author="Wolfram Research", title="{MittagLefflerE}", year="2012", howpublished="\url{}", note=[Accessed: 14-May-2021 ]}


@online{reference.wolfram_2020_mittaglefflere, organization={Wolfram Research}, title={MittagLefflerE}, year={2012}, url={}, note=[Accessed: 14-May-2021 ]}


Wolfram Language. 2012. "MittagLefflerE." Wolfram Language & System Documentation Center. Wolfram Research.


Wolfram Language. (2012). MittagLefflerE. Wolfram Language & System Documentation Center. Retrieved from