PositiveSemidefiniteMatrixQCopy to clipboard.
✖
PositiveSemidefiniteMatrixQ
范例
打开所有单元关闭所有单元基本范例 (2)常见实例总结

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-k5tb4m

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-1iqf8o


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-gntl81


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-0bvue1


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-znfdke

范围 (10)标准用法实例范围调查
基本用法 (6)

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-1kq4tu


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-5fazgj


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-tfdinn

用 PositiveSemidefiniteMatrixQ 测试任意精度的矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-eoeqf9


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-ow584e

用 PositiveSemidefiniteMatrixQ 测试符号矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-62ooyj


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-rni58c

PositiveSemidefiniteMatrixQ 可高效处理大型数值矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-1gk6wb

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-c5kyvx


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-nb2gv9

特殊矩阵 (4)
用 PositiveSemidefiniteMatrixQ 测试稀疏矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-0lcs36


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-cvjhfs

用 PositiveSemidefiniteMatrixQ 测试结构矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-my6pw


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-n6jq9t


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-tpv6mn

HilbertMatrix 是半正定矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-slp5k9

选项 (1)各选项的常用值和功能
Tolerance (1)

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-35lu76


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-mrsvrl

调整选项 Tolerance 接受矩阵作为半正定矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-cbjh4n

应用 (13)用该函数可以解决的问题范例
半正定矩阵的几何与代数性质 (5)

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-xq3amu


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-7eaz20

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-2bl8ys


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-mw6kb


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-z3oc9l


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-77xx63


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-589e5j


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-upvrmb


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-e6yjz3


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-lrsik1

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-xutlb2


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-zxn0wi


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-i4nhjp


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-4fnyml


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-1b2grz


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-x0igid


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-t4honb


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-8p80us


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-wvuonx

对于实值矩阵 ,只有对称的部分决定
是否为半正定矩阵. 写为
,
为对称部分,
为非对称部分:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-343mgv


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-i3xo0f


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-w3jv4l


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-jf2jdt


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-ri3cbu


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-cg0348

对于复矩阵 ,只有 Hermitian 部分决定
是否为半正定矩阵. 写为
,
是 Hermitian 矩阵,
为反埃尔米特矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-7in8hm


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-tq6566


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-1i72sc


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-33o78l


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-ww36rj


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-7zx7p2

半正定矩阵的来源 (8)
实 Covariance 矩阵总是对称的和半正定的:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-r24rp8


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-z9e7k3

为方阵,计算 SingularValueDecomposition[m]:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-ugfzlm

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-pu6p09


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-q5c30y

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-ernk9

从 WishartMatrixDistribution 得到的矩阵是实对称半正定矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-gf7yyg


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-0bx5p8

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-4r8vsp


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-coq2u3


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-d9orwc

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-co29v5


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-11h6uz


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-dr1ppf


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-hpm29l

矩阵 Min[i,j] 一定是对称半正定矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-r3v5d2


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-uj576h


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-wpbkgs

属性和关系 (13)函数的属性及与其他函数的关联
对于任何不是矩阵的 x,PositiveSemidefiniteMatrixQ[x] 返回 False:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-52egbw


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-uc2nl4


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-4rtpxr


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-0aaw2u


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-5s7mky

当且仅当实矩阵的对称部分是半正定的,实矩阵 才是半正定矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-gur7yw

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-32pn0w

一般情况下,当且仅当矩阵的 Hermitian 部分是半正定的,矩阵 才是半正定矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-1woht6

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-v0nw29

当且仅当实对称矩阵的特征值都是非负的,实对称矩阵才是半正定矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-0gbqgh

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-odzxnu


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-mi6tly


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-gegyod

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-olr87h


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-2wlag4


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-pnkm16


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-i7vtvh


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-pordaa


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-ymsd52


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-wktjrm


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-6i3wqm


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-5cykp8


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-5mtsrr


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-1lhk03

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-ros799
根据谱定理,可用 JordanDecomposition 将 酉对角化:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-5xk4eo

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-e7l3ru


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-uu247o


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-s4ntwc


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-6c25gj

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-hrrwad


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-umljb8

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-qr2db6


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-umgbzb

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-ubfv0t


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-svo4k1


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-wm94q3

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-6g4zxu


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-unnzjp


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-1mwrnq

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-gn4gq1


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-6qsx6k


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-h57z2p

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-pjy0vj


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-cicqaf


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-f456sv


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-2pmo1x


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-0zjggt

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-8z4qk6


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-7bxtuv


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-xgm4wo


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-d8y78b

两个对称半正定矩阵的 Kronecker 积是对称半正定矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-luvzz6

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-nhifmq


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-78dgkz


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-95pre


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-bi9dt6

可能存在的问题 (2)常见隐患和异常行为
CholeskyDecomposition 不用于对称或者奇异的 Hermitian 半正定矩阵:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-eap5hh


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-fh02j4


PositiveSemidefiniteMatrixQ 将给出 False,除非它可以证明一个符号矩阵是半正定的:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-mht1w7

同时使用 Eigenvalues 和 Reduce 可给出更精确的结果:

https://wolfram.com/xid/0bhf3wgupbucv1cods4z-0dkk5z


https://wolfram.com/xid/0bhf3wgupbucv1cods4z-jri0ni

Wolfram Research (2014),PositiveSemidefiniteMatrixQ,Wolfram 语言函数,https://reference.wolfram.com/language/ref/PositiveSemidefiniteMatrixQ.html.
文本
Wolfram Research (2014),PositiveSemidefiniteMatrixQ,Wolfram 语言函数,https://reference.wolfram.com/language/ref/PositiveSemidefiniteMatrixQ.html.
Wolfram Research (2014),PositiveSemidefiniteMatrixQ,Wolfram 语言函数,https://reference.wolfram.com/language/ref/PositiveSemidefiniteMatrixQ.html.
CMS
Wolfram 语言. 2014. "PositiveSemidefiniteMatrixQ." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/PositiveSemidefiniteMatrixQ.html.
Wolfram 语言. 2014. "PositiveSemidefiniteMatrixQ." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/PositiveSemidefiniteMatrixQ.html.
APA
Wolfram 语言. (2014). PositiveSemidefiniteMatrixQ. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/PositiveSemidefiniteMatrixQ.html 年
Wolfram 语言. (2014). PositiveSemidefiniteMatrixQ. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/PositiveSemidefiniteMatrixQ.html 年
BibTeX
@misc{reference.wolfram_2025_positivesemidefinitematrixq, author="Wolfram Research", title="{PositiveSemidefiniteMatrixQ}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/PositiveSemidefiniteMatrixQ.html}", note=[Accessed: 30-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_positivesemidefinitematrixq, organization={Wolfram Research}, title={PositiveSemidefiniteMatrixQ}, year={2014}, url={https://reference.wolfram.com/language/ref/PositiveSemidefiniteMatrixQ.html}, note=[Accessed: 30-March-2025
]}