SphericalBesselY[n,z]
gives the spherical Bessel function of the second kind ![TemplateBox[{n, z}, SphericalBesselY] TemplateBox[{n, z}, SphericalBesselY]](Files/SphericalBesselY.en/33.png) .
. 
 
     
   SphericalBesselY
SphericalBesselY[n,z]
gives the spherical Bessel function of the second kind ![TemplateBox[{n, z}, SphericalBesselY] TemplateBox[{n, z}, SphericalBesselY]](Files/SphericalBesselY.en/1.png) .
. 
Details
 
   - Mathematical function, suitable for both symbolic and numerical manipulation.
- SphericalBesselY is given in terms of ordinary Bessel functions by ![TemplateBox[{n, z}, SphericalBesselY]=sqrt(pi/2)/sqrt(z)TemplateBox[{{n, +, {1, /, 2}}, z}, BesselY] TemplateBox[{n, z}, SphericalBesselY]=sqrt(pi/2)/sqrt(z)TemplateBox[{{n, +, {1, /, 2}}, z}, BesselY]](Files/SphericalBesselY.en/2.png) . .
- SphericalBesselY[n,z] has a branch cut discontinuity in the complex  plane running from plane running from to to . .
- Explicit symbolic forms for integer n can be obtained using FunctionExpand.
- For certain special arguments, SphericalBesselY automatically evaluates to exact values.
- SphericalBesselY can be evaluated to arbitrary numerical precision.
- SphericalBesselY automatically threads over lists.
- SphericalBesselY can be used with Interval and CenteredInterval objects. »
Examples
open all close allBasic Examples (5)
Plot  over a subset of the reals:
 over a subset of the reals:
Plot over a subset of the complexes:
Series expansion at the origin:
Series expansion at Infinity:
Scope (39)
Numerical Evaluation (6)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:
Or compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix SphericalBesselY function using MatrixFunction:
Specific Values (4)
SphericalBesselY for symbolic n:
Find the first positive zero of SphericalBesselY:
Different SphericalBesselY types give different symbolic forms:
Visualization (3)
Plot the SphericalBesselY function for integer ( ) and half-integer (
) and half-integer ( ) orders:
) orders:
Function Properties (12)
![TemplateBox[{{-, {1, /, 2}}, x}, SphericalBesselY] TemplateBox[{{-, {1, /, 2}}, x}, SphericalBesselY]](Files/SphericalBesselY.en/15.png) is defined for all real values greater than 0:
 is defined for all real values greater than 0:
Complex domain is the whole plane except  :
:
Approximate function range of ![TemplateBox[{0, x}, SphericalBesselY] TemplateBox[{0, x}, SphericalBesselY]](Files/SphericalBesselY.en/17.png) :
:
Approximate function range of ![TemplateBox[{1, x}, SphericalBesselY] TemplateBox[{1, x}, SphericalBesselY]](Files/SphericalBesselY.en/18.png) :
:
For integer  ,
, ![TemplateBox[{n, z}, SphericalBesselJ] TemplateBox[{n, z}, SphericalBesselJ]](Files/SphericalBesselY.en/20.png) is an even or odd function in
 is an even or odd function in  with the opposite parity of
 with the opposite parity of  :
:
SphericalBesselY threads elementwise over lists:
SphericalBesselY is not an analytic function:
SphericalBesselY is neither non-decreasing nor non-increasing for non-integer n:
SphericalBesselY is not injective:
SphericalBesselY is neither non-negative nor non-positive:
![TemplateBox[{n, z}, SphericalBesselY] TemplateBox[{n, z}, SphericalBesselY]](Files/SphericalBesselY.en/24.png) is singular for
 is singular for  , possibly including
, possibly including  , when
, when  is noninteger:
 is noninteger:
SphericalBesselY is neither convex nor concave:
TraditionalForm formatting:
Differentiation (3)
Integration (3)
Series Expansions (6)
Find the Taylor expansion using Series:
Plots of the first three approximations around  :
:
General term in the series expansion using SeriesCoefficient:
Find the series expansion at Infinity:
Function Identities and Simplifications (2)
Tech Notes
Related Guides
Related Links
History
Text
Wolfram Research (2007), SphericalBesselY, Wolfram Language function, https://reference.wolfram.com/language/ref/SphericalBesselY.html.
CMS
Wolfram Language. 2007. "SphericalBesselY." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SphericalBesselY.html.
APA
Wolfram Language. (2007). SphericalBesselY. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SphericalBesselY.html
BibTeX
@misc{reference.wolfram_2025_sphericalbessely, author="Wolfram Research", title="{SphericalBesselY}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SphericalBesselY.html}", note=[Accessed: 31-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_sphericalbessely, organization={Wolfram Research}, title={SphericalBesselY}, year={2007}, url={https://reference.wolfram.com/language/ref/SphericalBesselY.html}, note=[Accessed: 31-October-2025]}




![TemplateBox[{0, x}, SphericalBesselY] TemplateBox[{0, x}, SphericalBesselY]](Files/SphericalBesselY.en/13.png)
![TemplateBox[{0, x}, SphericalBesselY] TemplateBox[{0, x}, SphericalBesselY]](Files/SphericalBesselY.en/14.png) :
:![TemplateBox[{n, z}, SphericalBesselY]=(-1)^(n+1) TemplateBox[{n, {-, z}}, SphericalBesselY] TemplateBox[{n, z}, SphericalBesselY]=(-1)^(n+1) TemplateBox[{n, {-, z}}, SphericalBesselY]](Files/SphericalBesselY.en/23.png)

 derivative with respect to
 derivative with respect to 