WOLFRAM SYSTEM MODELER

RotorDisplacementAngle

Rotor lagging angle

Diagram

Wolfram Language

In[1]:=
SystemModel["Modelica.Electrical.Machines.Sensors.RotorDisplacementAngle"]
Out[1]:=

Information

This information is part of the Modelica Standard Library maintained by the Modelica Association.

Calculates rotor lagging angle by measuring the stator phase voltages, transforming them to the corresponding space phasor in stator-fixed coordinate system,
rotating the space phasor to the rotor-fixed coordinate system and calculating the angle of this space phasor.

The sensor's housing can be implicitly fixed (useSupport=false).
If the machine's stator also implicitly fixed (useSupport=false), the angle at the flange is equal to the angle of the machine's rotor against the stator.
Otherwise, the sensor's support has to be connected to the machine's support.

Parameters (5)

m

Value: 3

Type: Integer

Description: Number of phases

p

Value:

Type: Integer

Description: Number of pole pairs

positiveRange

Value: false

Type: Boolean

Description: Use only positive output range, if true

threshold

Value: 0

Type: Real

Description: Below threshold the voltage is considered as zero

useSupport

Value: false

Type: Boolean

Description: Use support or fixed housing

Connectors (5)

rotorDisplacementAngle

Type: RealOutput

Description: 'output Real' as connector

plug_p

Type: PositivePlug

Description: Positive polyphase electrical plug with m pins

plug_n

Type: NegativePlug

Description: Negative polyphase electrical plug with m pins

flange

Type: Flange_a

Description: One-dimensional rotational flange of a shaft (filled circle icon)

support

Type: Flange_a

Description: Support at which the reaction torque is acting

Components (10)

VoltageSensor1

Type: VoltageSensor

Description: Polyphase voltage sensor

ToSpacePhasorVS

Type: ToSpacePhasor

Description: Conversion of polyphase instantaneous values to space phasors

relativeAngleSensor

Type: RelAngleSensor

Description: Ideal sensor to measure the relative angle between two flanges

constant_

Type: Constant

Description: Generate constant signal of type Real

add

Type: Add

Description: Output the sum of the two inputs

rotatorVS2R

Type: Rotator

Description: Rotates space phasor

ToPolarVSR

Type: ToPolar

Description: Converts a space phasor to polar coordinates

fixed

Type: Fixed

Description: Flange fixed in housing at a given angle

wrapAngle

Type: WrapAngle

Description: Wrap angle to interval ]-pi,pi] or [0,2*pi[

lessThreshold

Type: LessThreshold

Description: Sets angle to zero when length is below threshold

Used in Examples (19)

SMR_DOL

Modelica.Electrical.Machines.Examples.SynchronousMachines

Test example: SynchronousMachineReluctanceRotor direct-on-line

SMR_Inverter

Modelica.Electrical.Machines.Examples.SynchronousMachines

Test example: SynchronousMachineReluctanceRotor with inverter

SMPM_Inverter

Modelica.Electrical.Machines.Examples.SynchronousMachines

Test example: PermanentMagnetSynchronousMachine with inverter

SMPM_CurrentSource

Modelica.Electrical.Machines.Examples.SynchronousMachines

Test example: PermanentMagnetSynchronousMachine fed by current source

SMPM_VoltageSource

Modelica.Electrical.Machines.Examples.SynchronousMachines

Test example: PermanentMagnetSynchronousMachine fed by FOC

SMEE_DOL

Modelica.Electrical.Machines.Examples.SynchronousMachines

Test example: ElectricalExcitedSynchronousMachine starting direct on line

SMEE_Generator

Modelica.Electrical.Machines.Examples.SynchronousMachines

Test example: ElectricalExcitedSynchronousMachine as Generator

SMPM_Inverter_Polyphase

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.ComparisonPolyphase

Starting of polyphase permanent magnet synchronous machine with inverter

SMEE_Generator_Polyphase

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.ComparisonPolyphase

Electrical excited polyphase synchronous machine operating as generator

SMR_Inverter_Polyphase

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines.ComparisonPolyphase

Starting of polyphase synchronous reluctance machine with inverter

SMPM_Inverter

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Starting of permanent magnet synchronous machine with inverter

SMPM_CurrentSource

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Test example: PermanentMagnetSynchronousMachine fed by current source

SMPM_VoltageSource

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Test example: PermanentMagnetSynchronousMachine fed by FOC

SMEE_DOL

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

ElectricalExcitedSynchronousMachine starting direct on line

SMEE_Generator

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Electrical excited synchronous machine operating as generator

SMR_Inverter

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Starting of synchronous reluctance machine with inverter

SMPM_CurrentSource

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Test example: PermanentMagnetSynchronousMachine fed by current source

SMEE_Generator

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Electrical excited synchronous machine operating as generator

SMR_CurrentSource

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Test example: Synchronous reluctance machine fed by current source

Used in Components (1)

MotorWithCurrentControl

Modelica.Blocks.Examples.Noise.Utilities.Parts

Synchronous machine with current controller and measurement noise