WOLFRAM

estimates the absolute correlation function at lags hspec from data.

represents the absolute correlation function at lags hspec for the random process proc.

represents the absolute correlation function at times s and t for the random process proc.

Details

Examples

open allclose all

Basic Examples  (4)Summary of the most common use cases

Estimate the absolute correlation function at lag 2:

Out[1]=1

Sample the absolute correlation function for a random sample from an autoregressive time series:

Out[2]=2

The absolute correlation function for a discrete-time process:

Out[1]=1
Out[2]=2

The absolute correlation function for a continuous-time process:

Out[1]=1
Out[2]=2

Scope  (13)Survey of the scope of standard use cases

Empirical Estimates  (7)

Estimate the absolute correlation function for some data at lag 5:

Out[1]=1

Obtain empirical estimates of the correlation function up to lag 9:

Out[1]=1

Compute the absolute correlation function for lags 1 to 9 in steps of 2:

Out[1]=1

Compute the absolute correlation function for a time series:

The absolute correlation function of a time series for multiple lags is given as a time series:

Out[2]=2
Out[3]=3

Estimate the absolute correlation function for an ensemble of paths:

Out[1]=1
Out[3]=3

Compare empirical and theoretical absolute correlation functions:

Out[3]=3

Plot the absolute cross-correlation for vector data:

Out[2]=2

Random Processeses  (6)

The absolute correlation function for a weakly stationary discrete-time process:

Out[1]=1
Out[2]=2

The absolute correlation function only depends on the antidiagonal :

Out[3]=3
Out[4]=4

The absolute correlation function for a weakly stationary continuous-time process:

Out[1]=1
Out[2]=2

The absolute correlation function only depends on the antidiagonal :

Out[3]=3
Out[4]=4

The absolute correlation function for a non-weakly stationary discrete-time process:

Out[1]=1
Out[2]=2

The absolute correlation function depends on both time arguments:

Out[3]=3
Out[4]=4

The absolute correlation function for a non-weakly stationary continuous-time process:

Out[1]=1
Out[2]=2

The absolute correlation function depends on both time arguments:

Out[3]=3
Out[4]=4

The correlation function for some time series processes:

Out[2]=2

Absolute cross-correlation plots for a vector ARProcess:

Out[2]=2

Applications  (2)Sample problems that can be solved with this function

Determine whether the following data is best modeled with an MAProcess or an ARProcess:

Out[2]=2

It is difficult to determine the underlying process from sample paths:

Out[5]=5

The absolute correlation function of the data decays slowly:

Out[6]=6

ARProcess is clearly a better candidate model than MAProcess:

Out[7]=7

Use the absolute correlation function to determine if a process is mean ergodic:

The process is weakly stationary:

Out[2]=2

Calculate the absolute correlation function:

Out[3]=3

Find the value of the strip integral:

Out[4]=4

Check if the limit of the integral is 0 to conclude mean ergodicity:

Out[5]=5

Properties & Relations  (13)Properties of the function, and connections to other functions

Sample absolute correlation function is a biased estimator for the process absolute correlation function:

Calculate the sample absolute correlation function:

Out[36]=36
Out[37]=37

Absolute correlation function for the process:

Out[38]=38

Plot both functions:

Out[39]=39

Absolute correlation function for a list can be calculated using AbsoluteCorrelation:

Calculate absolute correlation function for the data:

Out[2]=2

Use absolute correlation:

Out[3]=3
Out[4]=4

AbsoluteCorrelationFunction is the off-diagonal entry in the absolute correlation matrix:

Out[2]=2
Out[3]=3
Out[4]=4

Sample absolute correlation function at lag 0 estimates the second Moment:

Out[1]=1
Out[2]=2
Out[3]=3

Sample absolute correlation function is related to CovarianceFunction:

Out[2]=2
Out[3]=3
Out[4]=4

Sample absolute correlation function is related to CorrelationFunction:

Out[2]=2

Scale by the first element:

Out[3]=3

Compare to the sample correlation function:

Out[4]=4
Out[5]=5

Use Expectation to calculate the absolute correlation function:

Out[2]=2
Out[3]=3
Out[4]=4

The absolute correlation function is related to the Moment function:

Out[2]=2

Verify equality , where is the ^(th) moment function:

Out[3]=3
Out[4]=4

The absolute correlation function is related to the CovarianceFunction :

Out[2]=2

Verify equality , where is the mean function:

Out[3]=3
Out[4]=4

The absolute correlation function equals CovarianceFunction when the mean of the process is zero:

Out[1]=1
Out[2]=2
Out[3]=3

The absolute correlation function is invariant for ToInvertibleTimeSeries:

Out[2]=2
Out[3]=3
Out[4]=4

The absolute correlation function is not invariant to centralizing:

The data has nonzero mean:

Out[2]=2

Centralize data:

Compare absolute correlation functions:

Out[4]=4

PowerSpectralDensity is a transform of the absolute correlation function for mean zero processes:

Out[1]=1

Use FourierSequenceTransform with appropriate parameters:

Out[2]=2

Compare to the power spectrum:

Out[3]=3
Out[4]=4

Possible Issues  (1)Common pitfalls and unexpected behavior

AbsoluteCorrelationFunction output may contain DifferenceRoot:

Out[1]=1

Use FunctionExpand to recover explicit powers:

Out[2]=2
Wolfram Research (2012), AbsoluteCorrelationFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html.
Wolfram Research (2012), AbsoluteCorrelationFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html.

Text

Wolfram Research (2012), AbsoluteCorrelationFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html.

Wolfram Research (2012), AbsoluteCorrelationFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html.

CMS

Wolfram Language. 2012. "AbsoluteCorrelationFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html.

Wolfram Language. 2012. "AbsoluteCorrelationFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html.

APA

Wolfram Language. (2012). AbsoluteCorrelationFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html

Wolfram Language. (2012). AbsoluteCorrelationFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html

BibTeX

@misc{reference.wolfram_2025_absolutecorrelationfunction, author="Wolfram Research", title="{AbsoluteCorrelationFunction}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html}", note=[Accessed: 25-March-2025 ]}

@misc{reference.wolfram_2025_absolutecorrelationfunction, author="Wolfram Research", title="{AbsoluteCorrelationFunction}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html}", note=[Accessed: 25-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_absolutecorrelationfunction, organization={Wolfram Research}, title={AbsoluteCorrelationFunction}, year={2012}, url={https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html}, note=[Accessed: 25-March-2025 ]}

@online{reference.wolfram_2025_absolutecorrelationfunction, organization={Wolfram Research}, title={AbsoluteCorrelationFunction}, year={2012}, url={https://reference.wolfram.com/language/ref/AbsoluteCorrelationFunction.html}, note=[Accessed: 25-March-2025 ]}