BilateralLaplaceTransform
BilateralLaplaceTransform[expr,t,s]
gives the bilateral Laplace transform of expr.
BilateralLaplaceTransform[expr,{t1,t2,…,tn},{s1,s2,…,sn}]
gives the multidimensional bilateral Laplace transform of expr.
Details and Options
- The bilateral Laplace transform of a function is defined to be .
- The multidimensional bilateral Laplace transform is given by .
- The integral is computed using numerical methods if the third argument, s, is given a numerical value.
- The bilateral Laplace transform of exists only for complex values of such that . In some cases, this strip of definition may extend to a half-plane.
- The following options can be given:
-
AccuracyGoal Automatic digits of absolute accuracy sought Assumptions $Assumptions assumptions to make about parameters GenerateConditions True whether to generate answers that involve conditions on parameters Method Automatic method to use PerformanceGoal $PerformanceGoal aspects of performance to optimize PrecisionGoal Automatic digits of precision sought PrincipalValue False whether to find Cauchy principal value WorkingPrecision Automatic the precision used in internal computations
Examples
open allclose allBasic Examples (2)
Scope (20)
Univariate Functions (8)
Bilateral Laplace transform of the UnitStep function:
Bilateral Laplace transform of the UnitBox function:
UnitTriangle function:
Multivariate Functions (2)
Numerical Evaluation (2)
Calculate the bilateral Laplace transform at a single point:
Alternatively, calculate the Laplace transform symbolically:
Then evaluate it for a specific value of :
For some functions, the bilateral Laplace transform can be evaluated only numerically:
Plot the bilateral Laplace transform using numerical values only:
Formal Properties (8)
BilateralLaplaceTransform is a linear operator:
Bilateral Laplace transform of is the Laplace transform of evaluated at :
Convolution property of the bilateral Laplace transform:
Differentiation in the time domain:
Multiplication of the function by t with a positive integer power:
Options (4)
Assumptions (1)
Specify the range for a parameter using Assumptions:
GenerateConditions (1)
Set GenerateConditions to False to obtain a result without conditions:
PrincipalValue (1)
The bilateral transform of the following function is not defined due to the singularity at :
Use PrincipalValue to obtain the Cauchy principal value for the integral:
WorkingPrecision (1)
Use WorkingPrecision to obtain a result with arbitrary precision:
Properties & Relations (2)
BilateralLaplaceTransform and InverseBilateralLaplaceTransform are mutual inverses:
Use NIntegrate to obtain a numerical approximation:
NIntegrate computes the transform for numeric values of the bilateral Laplace parameter s:
Text
Wolfram Research (2021), BilateralLaplaceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/BilateralLaplaceTransform.html.
CMS
Wolfram Language. 2021. "BilateralLaplaceTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BilateralLaplaceTransform.html.
APA
Wolfram Language. (2021). BilateralLaplaceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BilateralLaplaceTransform.html