BooleanRegion
BooleanRegion[bfunc,{reg1,reg2,…}]
represents the Boolean combination bfunc of regions reg1, reg2, ….
Details and Options
- A point p belongs to BooleanRegion[bfunc,{reg1,reg2,…}] if bfunc[p∈reg1,p∈reg2,…] is True.
- For BoundaryMeshRegion regi, BooleanRegion represents the smallest BoundaryMeshRegion that contains the Boolean combination of regions regi.
- For MeshRegion regi, BooleanRegion gives the smallest MeshRegion that contains the Boolean combination of regions regi.
- The following functions are equivalent:
-
RegionIntersection[reg1,reg2,…] BooleanRegion[And, {reg1,reg2,…}] RegionUnion[reg1,reg2,…] BooleanRegion[Or, {reg1,reg2,…}] RegionDifference[reg1,reg2] BooleanRegion[And[#1,Not[#2]]&, {reg1,reg2}] RegionSymmetricDifference[reg1,…] BooleanRegion[Xor, {reg1,…}] - BooleanRegion takes the same options as Region.
Examples
open allclose allBasic Examples (2)
Scope (11)
Special Regions (5)
Formula Regions (2)
A Boolean Xor of ImplicitRegion objects is an ImplicitRegion:
A Boolean function applied to ParametricRegion objects:
Mesh Regions (2)
A Boolean function of BoundaryMeshRegion objects is a BoundaryMeshRegion:
A Boolean function of full dimensional MeshRegion objects is a MeshRegion:
Derived Regions (2)
A Boolean function of BooleanRegion objects:
A Boolean Or of TransformedRegion objects:
Properties & Relations (2)
RegionUnion is a Boolean combination Or of regions:
The RegionMeasure of a Boolean And obeys a simple formula:
Subtract the measure of the RegionUnion from the sum of the measures:
Possible Issues (3)
BooleanRegion is defined only for regions with the same RegionEmbeddingDimension:
Components of dimension less than the embedding dimension may be omitted:
BooleanRegion may include overlapping lower-dimensional components:
Neat Examples (1)
The Boolean Xor of two spiral polygons:
Text
Wolfram Research (2014), BooleanRegion, Wolfram Language function, https://reference.wolfram.com/language/ref/BooleanRegion.html (updated 2017).
CMS
Wolfram Language. 2014. "BooleanRegion." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/BooleanRegion.html.
APA
Wolfram Language. (2014). BooleanRegion. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BooleanRegion.html