WOLFRAM

Copy to clipboard.

gives the Fourier sequence transform of expr.

Copy to clipboard.
FourierSequenceTransform[expr,{n1,n2,},{ω1,ω2,}]

gives the multidimensional Fourier sequence transform.

Details and Options

  • FourierSequenceTransform is also known as discrete-time Fourier transform (DTFT).
  • FourierSequenceTransform[expr,n,ω] takes a sequence whose n^(th) term is given by expr, and yields a function of the continuous parameter ω.
  • The Fourier sequence transform of is by default defined to be .
  • The multidimensional transform of is defined to be .
  • The following options can be given:
  • Assumptions$Assumptionsassumptions on parameters
    FourierParameters {1,1}parameters to definite discrete-time Fourier transform
    GenerateConditions Falsewhether to generate results that involve conditions on parameters
  • Common settings for FourierParameters include:
  • {1,1}default settings
    {1,-2Pi}period 1
    {a,b}general setting

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Find the discrete-time Fourier transform of a simple signal:

Out[1]=1
Out[2]=2

Find a bivariate discrete-time Fourier transform:

Out[1]=1
Out[2]=2

Scope  (4)Survey of the scope of standard use cases

Compute the transform for each frequency ω:

Out[1]=1

Plot the spectrum:

Out[2]=2

The phase:

Out[3]=3

Plot both spectrum and phase using color:

Out[4]=4

Constant:

Out[1]=1

Periodic:

Out[2]=2
Out[3]=3
Out[4]=4
Out[5]=5

Impulse:

Out[6]=6
Out[7]=7

Exponential:

Out[8]=8
Out[9]=9

Exponential polynomial:

Out[10]=10
Out[11]=11

Rational sequence:

Out[1]=1

Rational-trigonometric:

Out[2]=2

Hypergeometric terms:

Out[3]=3
Out[4]=4

Multivariate sequences:

Out[1]=1
Out[2]=2

Options  (2)Common values & functionality for each option

FourierParameters  (1)

Use a non-default setting for FourierParameters:

Out[1]=1

GenerateConditions  (1)

Obtain conditions on parameters:

Out[1]=1

Properties & Relations  (5)Properties of the function, and connections to other functions

FourierSequenceTransform is defined by a doubly infinite sum:

Out[1]=1
Out[2]=2

FourierSequenceTransform and InverseFourierSequenceTransform are inverses:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4
Out[5]=5

FourierSequenceTransform is closely related to ZTransform:

Out[1]=1

A discrete analog of FourierTransform being closely related to LaplaceTransform:

Out[2]=2

FourierSequenceTransform provides a -analog generating function:

Out[1]=1
Out[2]=2
Out[3]=3

FourierSequenceTransform is closely related to BilateralZTransform:

Out[1]=1
Out[2]=2
Wolfram Research (2008), FourierSequenceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSequenceTransform.html.
Copy to clipboard.
Wolfram Research (2008), FourierSequenceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSequenceTransform.html.

Text

Wolfram Research (2008), FourierSequenceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSequenceTransform.html.

Copy to clipboard.
Wolfram Research (2008), FourierSequenceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSequenceTransform.html.

CMS

Wolfram Language. 2008. "FourierSequenceTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FourierSequenceTransform.html.

Copy to clipboard.
Wolfram Language. 2008. "FourierSequenceTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FourierSequenceTransform.html.

APA

Wolfram Language. (2008). FourierSequenceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierSequenceTransform.html

Copy to clipboard.
Wolfram Language. (2008). FourierSequenceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierSequenceTransform.html

BibTeX

@misc{reference.wolfram_2025_fouriersequencetransform, author="Wolfram Research", title="{FourierSequenceTransform}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FourierSequenceTransform.html}", note=[Accessed: 21-April-2025 ]}

Copy to clipboard.
@misc{reference.wolfram_2025_fouriersequencetransform, author="Wolfram Research", title="{FourierSequenceTransform}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FourierSequenceTransform.html}", note=[Accessed: 21-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_fouriersequencetransform, organization={Wolfram Research}, title={FourierSequenceTransform}, year={2008}, url={https://reference.wolfram.com/language/ref/FourierSequenceTransform.html}, note=[Accessed: 21-April-2025 ]}

Copy to clipboard.
@online{reference.wolfram_2025_fouriersequencetransform, organization={Wolfram Research}, title={FourierSequenceTransform}, year={2008}, url={https://reference.wolfram.com/language/ref/FourierSequenceTransform.html}, note=[Accessed: 21-April-2025 ]}