FourierSequenceTransformCopy to clipboard.
✖
FourierSequenceTransform
gives the Fourier sequence transform of expr.
gives the multidimensional Fourier sequence transform.
Details and Options

- FourierSequenceTransform is also known as discrete-time Fourier transform (DTFT).
- FourierSequenceTransform[expr,n,ω] takes a sequence whose n
term is given by expr, and yields a function of the continuous parameter ω.
- The Fourier sequence transform of
is by default defined to be
.
- The multidimensional transform of
is defined to be
.
- The following options can be given:
-
Assumptions $Assumptions assumptions on parameters FourierParameters {1,1} parameters to definite discrete-time Fourier transform GenerateConditions False whether to generate results that involve conditions on parameters - Common settings for FourierParameters include:
-
{1,1} default settings {1,-2Pi} period 1 {a,b} general setting
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Find the discrete-time Fourier transform of a simple signal:

https://wolfram.com/xid/0k7z1b0wab41u-b1662i


https://wolfram.com/xid/0k7z1b0wab41u-kj86oh

Find a bivariate discrete-time Fourier transform:

https://wolfram.com/xid/0k7z1b0wab41u-hehoex


https://wolfram.com/xid/0k7z1b0wab41u-m52g20

Scope (4)Survey of the scope of standard use cases
Compute the transform for each frequency ω:

https://wolfram.com/xid/0k7z1b0wab41u-bary2o


https://wolfram.com/xid/0k7z1b0wab41u-q8h2e2


https://wolfram.com/xid/0k7z1b0wab41u-b70np3

Plot both spectrum and phase using color:

https://wolfram.com/xid/0k7z1b0wab41u-g234r


https://wolfram.com/xid/0k7z1b0wab41u-ffijeh


https://wolfram.com/xid/0k7z1b0wab41u-iugvcm


https://wolfram.com/xid/0k7z1b0wab41u-iuix14


https://wolfram.com/xid/0k7z1b0wab41u-b1rjgw


https://wolfram.com/xid/0k7z1b0wab41u-buel8z


https://wolfram.com/xid/0k7z1b0wab41u-cbzghg


https://wolfram.com/xid/0k7z1b0wab41u-cj7t8l


https://wolfram.com/xid/0k7z1b0wab41u-20lof


https://wolfram.com/xid/0k7z1b0wab41u-maho17


https://wolfram.com/xid/0k7z1b0wab41u-ehdpui


https://wolfram.com/xid/0k7z1b0wab41u-dkiiuy


https://wolfram.com/xid/0k7z1b0wab41u-f9vqod


https://wolfram.com/xid/0k7z1b0wab41u-q6h6gz


https://wolfram.com/xid/0k7z1b0wab41u-cbzc1t


https://wolfram.com/xid/0k7z1b0wab41u-iiyxcq


https://wolfram.com/xid/0k7z1b0wab41u-izqxoh


https://wolfram.com/xid/0k7z1b0wab41u-npml

Options (2)Common values & functionality for each option
FourierParameters (1)
Use a non-default setting for FourierParameters:

https://wolfram.com/xid/0k7z1b0wab41u-hbsr0u

Properties & Relations (5)Properties of the function, and connections to other functions
FourierSequenceTransform is defined by a doubly infinite sum:

https://wolfram.com/xid/0k7z1b0wab41u-gi822v


https://wolfram.com/xid/0k7z1b0wab41u-ecyje

FourierSequenceTransform and InverseFourierSequenceTransform are inverses:

https://wolfram.com/xid/0k7z1b0wab41u-i6nas0


https://wolfram.com/xid/0k7z1b0wab41u-g3nh98


https://wolfram.com/xid/0k7z1b0wab41u-xp11i


https://wolfram.com/xid/0k7z1b0wab41u-0nxw6


https://wolfram.com/xid/0k7z1b0wab41u-id2kzh

FourierSequenceTransform is closely related to ZTransform:

https://wolfram.com/xid/0k7z1b0wab41u-hklar3

A discrete analog of FourierTransform being closely related to LaplaceTransform:

https://wolfram.com/xid/0k7z1b0wab41u-cns8ua

FourierSequenceTransform provides a -analog generating function:

https://wolfram.com/xid/0k7z1b0wab41u-bkykgh


https://wolfram.com/xid/0k7z1b0wab41u-bbz24i


https://wolfram.com/xid/0k7z1b0wab41u-dxe3y7

FourierSequenceTransform is closely related to BilateralZTransform:

https://wolfram.com/xid/0k7z1b0wab41u-19m1r9


https://wolfram.com/xid/0k7z1b0wab41u-mlx09s

Wolfram Research (2008), FourierSequenceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSequenceTransform.html.
Text
Wolfram Research (2008), FourierSequenceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSequenceTransform.html.
Wolfram Research (2008), FourierSequenceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSequenceTransform.html.
CMS
Wolfram Language. 2008. "FourierSequenceTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FourierSequenceTransform.html.
Wolfram Language. 2008. "FourierSequenceTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FourierSequenceTransform.html.
APA
Wolfram Language. (2008). FourierSequenceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierSequenceTransform.html
Wolfram Language. (2008). FourierSequenceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierSequenceTransform.html
BibTeX
@misc{reference.wolfram_2025_fouriersequencetransform, author="Wolfram Research", title="{FourierSequenceTransform}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FourierSequenceTransform.html}", note=[Accessed: 21-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_fouriersequencetransform, organization={Wolfram Research}, title={FourierSequenceTransform}, year={2008}, url={https://reference.wolfram.com/language/ref/FourierSequenceTransform.html}, note=[Accessed: 21-April-2025
]}