LommelS1[m,n,z]
gives the Lommel function of the first kind .


LommelS1
LommelS1[m,n,z]
gives the Lommel function of the first kind .
Details

- LommelS1 is also known as a Lommel function of the first kind.
- Lommel functions are typically used to represent particular solutions of Bessel-type differential equations.
- Mathematical function, suitable for both symbolic and numerical manipulation.
satisfies the differential equation
. »
- LommelS1[m,n,z] has a branch cut discontinuity in the complex z plane running from
to
.
- For certain special arguments, LommelS1 automatically evaluates to exact values.
- LommelS1 can be evaluated to arbitrary numerical precision.
- LommelS1 automatically threads over lists.
Examples
open all close allBasic Examples (6)
Plot over a subset of the complexes:
Expand LommelS1 in a Taylor series at the origin:
Scope (29)
Numerical Evaluation (4)
Evaluate numerically to high precision:
The precision of the output tracks the precision of the input:
Evaluate for complex arguments and parameters:
LommelS1 threads elementwise over lists in the last argument:
Compute the matrix LommelS1 function using MatrixFunction:
Specific Values (3)
Visualization (3)
Function Properties (3)
Integration (4)
Series Expansions (2)
Integral Transforms (5)
Compute the Laplace transform using LaplaceTransform:
Compute the Fourier transform of LommelS1:
Function Representations (3)
Relation to the HypergeometricPFQ function:
Properties & Relations (2)
Use FunctionExpand to expand LommelS1 into hypergeometric functions:
FunctionExpand for a specific set of parameters can generate simpler special functions:
Neat Examples (1)
Riemann surface of LommelS1:
Related Guides
History
Text
Wolfram Research (2025), LommelS1, Wolfram Language function, https://reference.wolfram.com/language/ref/LommelS1.html.
CMS
Wolfram Language. 2025. "LommelS1." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LommelS1.html.
APA
Wolfram Language. (2025). LommelS1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LommelS1.html
BibTeX
@misc{reference.wolfram_2025_lommels1, author="Wolfram Research", title="{LommelS1}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/LommelS1.html}", note=[Accessed: 04-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_lommels1, organization={Wolfram Research}, title={LommelS1}, year={2025}, url={https://reference.wolfram.com/language/ref/LommelS1.html}, note=[Accessed: 04-August-2025]}