NFractionalDCopy to clipboard.
✖
NFractionalD
gives a numerical approximation to the Riemann–Liouville fractional derivative of order α of the function f at the point x0.
Details and Options

- NFractionalD is the numerical analog of FractionalD, also known as the Riemann–Liouville differintegral of f.
- The Riemann–Liouville fractional derivative of
of order
is defined as
, where
.
- NFractionalD is typically used in cases when symbolic evaluation with FractionalD fails.
- The following options can be given to NFractionalD:
-
Method Automatic method to use AccuracyGoal Infinity digits of absolute accuracy sought PrecisionGoal Automatic digits of precision sought WorkingPrecision MachinePrecision the precision used in internal computations - The following Method option settings may be used:
-
Automatic automatically selected method "GrunwaldLetnikov" Grünwald-Letnikov fractional differintegration scheme "RiemannLiouville" Riemann-Liouville fractional differintegration scheme
Examples
open allclose allBasic Examples (5)Summary of the most common use cases
Calculate the half-order fractional derivative of a quadratic function with respect to x at some point:

https://wolfram.com/xid/0dqw9zwuyov-9ijqxw

Calculate the -order fractional derivative of a constant with respect to x at some point:

https://wolfram.com/xid/0dqw9zwuyov-y2w9t3

Plot the -order fractional derivative of an exponential function:

https://wolfram.com/xid/0dqw9zwuyov-8dwjik

Numerical fractional derivative of MittagLefflerE at a point:

https://wolfram.com/xid/0dqw9zwuyov-gl9r59

Generate a list of numerical values of the fractional derivative of the MittagLefflerE function:

https://wolfram.com/xid/0dqw9zwuyov-p4s7hs
Plot this fractional derivative:

https://wolfram.com/xid/0dqw9zwuyov-dcm5gq

Numerical fractional integral:

https://wolfram.com/xid/0dqw9zwuyov-ge8q19

Scope (9)Survey of the scope of standard use cases
Plot the -order fractional derivative of the square function with respect to x:

https://wolfram.com/xid/0dqw9zwuyov-q6t8ng

Calculate the 0.23-order fractional derivative of the Exp function numerically and symbolically:

https://wolfram.com/xid/0dqw9zwuyov-joioqz


https://wolfram.com/xid/0dqw9zwuyov-gvkdq9

Calculate the value of the half-order derivative of the ArcTan function at some point:

https://wolfram.com/xid/0dqw9zwuyov-b0uzfd


https://wolfram.com/xid/0dqw9zwuyov-6h0lup

The -order fractional derivative of the Sin function:

https://wolfram.com/xid/0dqw9zwuyov-2gpsww

The -order fractional integral of the Sin function:

https://wolfram.com/xid/0dqw9zwuyov-nf4fb4

The half-order fractional derivative of the AiryAi function:

https://wolfram.com/xid/0dqw9zwuyov-xjal6t

Numerically calculate the fractional derivative of the BesselJ function:

https://wolfram.com/xid/0dqw9zwuyov-e3yxgu

Numerically calculate the fractional derivative of the MeijerG function:

https://wolfram.com/xid/0dqw9zwuyov-4k5kwb

Plot the numerically calculated fractional derivatives and integrals of a trigonometric product:

https://wolfram.com/xid/0dqw9zwuyov-v8dpud


https://wolfram.com/xid/0dqw9zwuyov-hkl3c3

Options (2)Common values & functionality for each option
Method (2)
NFractionalD has two built-in methods, the Riemann–Liouville and the Grünwald–Letnikov methods:

https://wolfram.com/xid/0dqw9zwuyov-mr32es


https://wolfram.com/xid/0dqw9zwuyov-2efjy6

If the Method is not specified, NFractionalD automatically uses the Riemann–Liouville approach:

https://wolfram.com/xid/0dqw9zwuyov-79lsi5

In some cases, the Grünwald–Letnikov method is able to calculate the numerical fractional derivative:

https://wolfram.com/xid/0dqw9zwuyov-1z2pdx

It is not possible to calculate this fractional derivative using the Riemann–Liouville method:

https://wolfram.com/xid/0dqw9zwuyov-cc3wod

Applications (3)Sample problems that can be solved with this function
NFractionalD is able to numerically calculate fractional derivatives when FractionalD fails:

https://wolfram.com/xid/0dqw9zwuyov-fgc8rk


https://wolfram.com/xid/0dqw9zwuyov-fztxfs

FractionalD outputs may contain DifferenceRoot sequences:

https://wolfram.com/xid/0dqw9zwuyov-qbhxtp

For a specific order of fractional differentiation, this is a cumbersome sum of HypergeometricPFQ functions:

https://wolfram.com/xid/0dqw9zwuyov-0lugr2

However, the numerically calculated fractional derivative plot might be insightful:

https://wolfram.com/xid/0dqw9zwuyov-rpoch9

Effectively generate a list of numerical values of fractional derivatives of a complex function using NFractionalD:

https://wolfram.com/xid/0dqw9zwuyov-ibqmwt
The timing for the calculated 151 values:

https://wolfram.com/xid/0dqw9zwuyov-b1o5f5

Plot this fractional derivative:

https://wolfram.com/xid/0dqw9zwuyov-7ph0ls

Properties & Relations (6)Properties of the function, and connections to other functions
NFractionalD is defined for all real :

https://wolfram.com/xid/0dqw9zwuyov-z2ojjm


https://wolfram.com/xid/0dqw9zwuyov-n1trsx


https://wolfram.com/xid/0dqw9zwuyov-by8bld


In general, the fractional derivative of a constant is not 0:

https://wolfram.com/xid/0dqw9zwuyov-heuuox

NFractionalD gives the output in WorkingPrecision (if not specified, it is MachinePrecision):

https://wolfram.com/xid/0dqw9zwuyov-u2ihnv


https://wolfram.com/xid/0dqw9zwuyov-fe5t59

If the Method option is not specified, NFractionalD uses the "RiemannLiouville" method:

https://wolfram.com/xid/0dqw9zwuyov-neou5t


https://wolfram.com/xid/0dqw9zwuyov-6cv5to

Plot the fractional derivative using the numerical NFractionalD approach:

https://wolfram.com/xid/0dqw9zwuyov-um8zu6

Compare with the symbolic FractionalD approach:

https://wolfram.com/xid/0dqw9zwuyov-508p2e

For negative orders , NCaputoD coincides with NFractionalD:

https://wolfram.com/xid/0dqw9zwuyov-8dz1if


https://wolfram.com/xid/0dqw9zwuyov-t2n3hc

Possible Issues (3)Common pitfalls and unexpected behavior
NFractionalD will generate an error message if the Method option is not correct:

https://wolfram.com/xid/0dqw9zwuyov-dxj3jy


NFractionalD will generate an error message if the precision of input is less than the WorkingPrecision:

https://wolfram.com/xid/0dqw9zwuyov-ibopf7


NFractionalD takes only numeric points of evaluation:

https://wolfram.com/xid/0dqw9zwuyov-h5ph01


https://wolfram.com/xid/0dqw9zwuyov-6iqsnn


Neat Examples (1)Surprising or curious use cases
Plot the Sin function and its half, first and -order derivatives:

https://wolfram.com/xid/0dqw9zwuyov-wuw4q5

Wolfram Research (2022), NFractionalD, Wolfram Language function, https://reference.wolfram.com/language/ref/NFractionalD.html.
Text
Wolfram Research (2022), NFractionalD, Wolfram Language function, https://reference.wolfram.com/language/ref/NFractionalD.html.
Wolfram Research (2022), NFractionalD, Wolfram Language function, https://reference.wolfram.com/language/ref/NFractionalD.html.
CMS
Wolfram Language. 2022. "NFractionalD." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NFractionalD.html.
Wolfram Language. 2022. "NFractionalD." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NFractionalD.html.
APA
Wolfram Language. (2022). NFractionalD. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NFractionalD.html
Wolfram Language. (2022). NFractionalD. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NFractionalD.html
BibTeX
@misc{reference.wolfram_2025_nfractionald, author="Wolfram Research", title="{NFractionalD}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/NFractionalD.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_nfractionald, organization={Wolfram Research}, title={NFractionalD}, year={2022}, url={https://reference.wolfram.com/language/ref/NFractionalD.html}, note=[Accessed: 04-April-2025
]}