-
Functions
- Array
- ArrayFlatten
- ArrayPad
- Band
- BoxMatrix
- CenterArray
- CoefficientArrays
- ConstantArray
- CrossMatrix
- DiagonalMatrix
- DiamondMatrix
- DiskMatrix
- GaussianMatrix
- HankelMatrix
- HilbertMatrix
- IdentityMatrix
- Join
- Normal
- PadLeft
- PadRight
- Partition
- RotationMatrix
- ScalingMatrix
- ShearingMatrix
- SparseArray
- Table
- ToeplitzMatrix
- Related Guides
- Tech Notes
-
-
Functions
- Array
- ArrayFlatten
- ArrayPad
- Band
- BoxMatrix
- CenterArray
- CoefficientArrays
- ConstantArray
- CrossMatrix
- DiagonalMatrix
- DiamondMatrix
- DiskMatrix
- GaussianMatrix
- HankelMatrix
- HilbertMatrix
- IdentityMatrix
- Join
- Normal
- PadLeft
- PadRight
- Partition
- RotationMatrix
- ScalingMatrix
- ShearingMatrix
- SparseArray
- Table
- ToeplitzMatrix
- Related Guides
- Tech Notes
-
Functions
Constructing Matrices
The Wolfram Language provides a range of methods for representing and constructing matrices. Especially powerful are symbolic representations, in terms of symbolic systems of equations, symbolic sparse or banded matrices, and symbolic geometric transformations.
Table — construct a matrix from an expression
Array — construct a matrix from a function
CoefficientArrays — construct a matrix from a system of equations
SparseArray — construct a sparse matrix from positions and values
Normal — convert a sparse matrix to ordinary form
Band — give values on any collection of bands, for tridiagonal etc. matrices
IdentityMatrix ▪ DiagonalMatrix ▪ ConstantArray ▪ CenterArray
ArrayFlatten — flatten a matrix of matrices to make a block matrix
Partition — partition a list to make a matrix
Join — join several matrices to make a matrix
PadLeft, PadRight — pad out a ragged array to make a matrix
ArrayPad — add padding around a matrix
HilbertMatrix ▪ HankelMatrix ▪ ToeplitzMatrix
Geometric Matrices »
RotationMatrix ▪ ScalingMatrix ▪ ShearingMatrix ▪ ...
Structure Matrices »
BoxMatrix ▪ CrossMatrix ▪ DiamondMatrix ▪ DiskMatrix ▪ GaussianMatrix ▪ ...