InverseFourierSequenceTransform

InverseFourierSequenceTransform[expr,ω,n]

gives the inverse discrete-time Fourier transform of expr.

InverseFourierSequenceTransform[expr,{ω1,ω2,},{n1,n2,}]

gives the multidimensional inverse Fourier sequence transform.

Details and Options

Examples

open allclose all

Basic Examples  (2)

Find the discrete-time inverse Fourier transform of :

Find a bivariate discrete-time inverse Fourier transform:

Scope  (3)

Inverse transform of rational exponential function:

Gaussian function:

A constant frequency gives an impulse and vice versa:

Rational function in :

Options  (2)

Assumptions  (1)

Specify assumptions on a parameter:

FourierParameters  (1)

Use a nondefault setting for FourierParameters:

Properties & Relations  (6)

InverseFourierSequenceTransform is defined by an integral:

InverseFourierSequenceTransform and FourierSequenceTransform are inverses:

InverseFourierSequenceTransform is closely related to InverseZTransform:

Just as InverseFourierTransform is closely related to InverseLaplaceTransform:

InverseFourierSequenceTransform is the same as FourierCoefficient:

Inverse discrete-time Fourier transform for basis exponentials:

InverseFourierSequenceTransform is closely related to InverseBilateralZTransform:

Wolfram Research (2008), InverseFourierSequenceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseFourierSequenceTransform.html.

Text

Wolfram Research (2008), InverseFourierSequenceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseFourierSequenceTransform.html.

CMS

Wolfram Language. 2008. "InverseFourierSequenceTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseFourierSequenceTransform.html.

APA

Wolfram Language. (2008). InverseFourierSequenceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseFourierSequenceTransform.html

BibTeX

@misc{reference.wolfram_2024_inversefouriersequencetransform, author="Wolfram Research", title="{InverseFourierSequenceTransform}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/InverseFourierSequenceTransform.html}", note=[Accessed: 03-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_inversefouriersequencetransform, organization={Wolfram Research}, title={InverseFourierSequenceTransform}, year={2008}, url={https://reference.wolfram.com/language/ref/InverseFourierSequenceTransform.html}, note=[Accessed: 03-December-2024 ]}