WOLFRAM

ComplexStreamPlot[f,{z,zmin,zmax}]

generates a streamline plot of the vector field {Re[f],Im[f]} over the complex rectangle with corners zmin and zmax.

Details and Options

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Visualize a complex function of a complex variable as a stream plot:

Out[1]=1

Scope  (22)Survey of the scope of standard use cases

Sampling  (8)

Plot a complex functions with streamlines placed with specified densities:

Out[1]=1

Plot the streamlines that go through a set of complex seed points:

Out[1]=1

Use both automatic and explicit seeding with styles for explicitly seeded streamlines:

Out[1]=1

Plot streamlines over a specified complex region:

Out[1]=1

Plot two functions together:

Out[1]=1

Use a specific number of mesh lines:

Out[1]=1

Specify specific mesh lines:

Out[1]=1

Use Evaluate to evaluate the vector field symbolically before numeric assignment:

Out[1]=1

Presentation  (14)

Specify different dashings and arrowheads by setting to StreamScale:

Out[1]=1

Plot the streamlines with arrows colored according to the modulus of the function:

Out[1]=1

Apply a variety of streamline markers:

Out[1]=1

Use a theme with axes and a different default color:

Out[1]=1

Override the style from the theme:

Out[1]=1

Change the color function:

Out[1]=1

Specify a uniform color for the streamlines:

Out[1]=1

Specify mesh lines with different styles:

Out[1]=1

Specify global mesh line styles:

Out[1]=1

Shade mesh regions cyclically:

Out[1]=1

Apply a variety of styles to region boundaries:

Out[2]=2

Add a legend indicating the modulus of the function:

Out[1]=1

Use the functions as legend labels:

Out[1]=1

Use explicit labels for each vector field:

Out[1]=1

Options  (60)Common values & functionality for each option

Background  (1)

Use a colored background:

Out[5]=5

EvaluationMonitor  (2)

Show where the vector field function is sampled:

Out[1]=1

Count the number of times the vector field function is evaluated:

Out[1]=1

PerformanceGoal  (2)

Generate a higher-quality plot:

Out[1]=1

Emphasize performance, possibly at the cost of quality:

Out[1]=1

PlotLegends  (7)

No legends are included, by default:

Out[2]=2

Include a legend that indicates the modulus of the function:

Out[1]=1

Include a legend to distinguish two functions:

Out[1]=1

Control the placement of the legend:

Out[1]=1

Use the functions as the legend text:

Out[1]=1

Use placeholder text:

Out[1]=1

Change the appearance of the legend:

Out[1]=1

PlotRange  (5)

The full plot range is used by default:

Out[3]=3

Specify an explicit limit for both the and ranges:

Out[1]=1

Specify an explicit range:

Out[1]=1

Specify an explicit range:

Out[1]=1

Specify different and ranges:

Out[1]=1

PlotTheme  (3)

Use a theme with simpler ticks and brighter colors:

Out[1]=1

Use a theme with automatic legends and dense streamlines:

Out[1]=1

Change the stream styles:

Out[1]=1

RegionBoundaryStyle  (1)

By default, region boundaries are styled automatically:

Out[2]=2

Apply a variety of styles to region boundaries:

Out[3]=3

RegionFillingStyle  (1)

By default, regions are filled:

Out[2]=2

Show no filling:

Out[3]=3

Choose a different filling:

Out[4]=4

RegionFunction  (3)

Plot streamlines only over a disk:

Out[1]=1

Plot streamlines only over regions where the modulus of the function exceeds a given threshold:

Out[1]=1

Use a logical combination of conditions:

Out[1]=1

StreamColorFunction  (5)

Color streamlines according to the modulus of the function:

Out[1]=1

Use any named color gradient from ColorData:

Out[1]=1

Use ColorData for predefined color gradients:

Out[1]=1

Specify a color function that blends two colors by :

Out[1]=1

Use StreamColorFunctionScalingFalse to get unscaled values:

Out[1]=1

StreamColorFunctionScaling  (3)

By default, scaled values are used:

Out[1]=1

Use StreamColorFunctionScalingFalse to get unscaled values:

Out[1]=1

Explicitly specify the scaling for each color function argument:

Out[1]=1

StreamMarkers  (8)

Streamlines are drawn as arrows by default:

Out[1]=1

Use a named appearance to draw the streamlines:

Out[1]=1

Use different markers for different vector fields:

Out[1]=1

Use named styles:

Out[1]=1

Named arrow styles:

Out[1]=1

Named dot styles:

Out[1]=1

Named pointer styles:

Out[1]=1

Named dart styles:

Out[1]=1

StreamPoints  (5)

Specify a specific maximum number of streamlines:

Out[1]=1

Use symbolic names to specify the number of streamlines:

Out[1]=1

Use both automatic and explicit seeding with styles for explicitly seeded streamlines:

Out[1]=1

Specify the minimum distance between streamlines:

Out[1]=1

Specify the minimum distance between streamlines at the start and end of a streamline:

Out[1]=1

StreamScale  (9)

Create full streamlines without segmentation:

Out[1]=1

Use curves for streamlines:

Out[1]=1

Use symbolic names to control the lengths of streamlines:

Out[1]=1

Specify segment lengths:

Out[1]=1

Specify an explicit dashing pattern for streamlines:

Out[1]=1

Specify the number of points rendered on each streamline segment:

Out[1]=1

Specify absolute aspect ratios relative to the longest line segment:

Out[1]=1

Specify relative aspect ratios relative to each line segment:

Out[1]=1

Scale the length of the arrows by the :

Out[1]=1

StreamStyle  (5)

StreamColorFunction has precedence over StreamStyle for colors:

Out[1]=1

Use StreamColorFunctionNone to specify colors with StreamStyle:

Out[1]=1

Apply a variety of styles to the streamlines:

Out[1]=1

Specify a custom arrowhead:

Out[1]=1

Set the style for multiple functions:

Out[1]=1

Applications  (10)Sample problems that can be solved with this function

Basic Applications  (1)

Plot a function with a simple zero:

Out[1]=1

Shift the function to the left by 1:

Out[2]=2

Plot a function with a double zero:

Out[3]=3

Plot a square root function:

Out[4]=4

Plot a trigonometric function:

Out[5]=5

Plot a transcendental function:

Out[6]=6

Plot a function with a simple pole:

Out[7]=7

Plot a function with a double pole:

Out[8]=8

Other Applications  (9)

Streamlines that diverge from a point indicate a simple zero:

Out[1]=1

Streamlines can also converge at a simple zero:

Out[2]=2

With , the real vector field corresponding to the complex function is , and the trajectories that follow the field satisfy the differential equation . The implicit solution is for real , which corresponds to a family of circles that are tangent to the real axis at the origin:

Out[1]=1

In polar coordinates, the trajectories are for any real :

Out[2]=2

More generally, for where is an integer, the streamlines follow for constant :

Out[4]=4
Out[6]=6

Near a zero of order , the streamlines form loops that start and end at the zero in directions:

Out[2]=2

Near a pole of order , the streamlines converge to the pole from directions and diverge from the pole from directions:

Out[2]=2

The function has simple zeros at and , poles of order 1 at , and a pole of order 2 at :

Out[1]=1

Near an essential singularity, the streamlines vary wildly:

Out[1]=1

Plot a function and its derivatives:

Out[1]=1

Generate a Pólya plot:

Out[1]=1

Let be a complex potential for an ideal fluid flow. Then is the velocity potential, is the stream function, and the fluid velocity field is . By the CauchyRiemann equations, , so you can generate a stream plot with the conjugate of . Show streamlines for flow around a cylinder with circulation:

Out[2]=2

Show streamlines for flow external to a corner:

Out[4]=4

Properties & Relations  (15)Properties of the function, and connections to other functions

ComplexStreamPlot is a special case of StreamPlot:

Out[2]=2

ComplexVectorPlot plots complex numbers as vectors:

Out[1]=1

ComplexVectorPlot is a special case of VectorPlot:

Out[2]=2

Use VectorDisplacementPlot to visualize the effect of a complex function on a specified region:

Out[1]=1

Use VectorPlot3D and StreamPlot3D to visualize 3D vector fields:

Out[1]=1

ComplexContourPlot plots curves over the complexes:

Out[1]=1

ComplexRegionPlot plots regions over the complexes:

Out[1]=1

ComplexPlot shows the argument and magnitude of a function using color:

Out[1]=1

Use ComplexPlot3D to use the axis for the magnitude:

Out[1]=1

Use ComplexArrayPlot for arrays of complex numbers:

Out[1]=1

Use ReImPlot and AbsArgPlot to plot complex values over the real numbers:

Out[1]=1
Out[2]=2

Use ComplexListPlot to show the location of complex numbers in the plane:

Out[1]=1

Use ListVectorPlot for plotting data:

Out[2]=2

Use ListStreamPlot to plot streams instead of vectors:

Out[3]=3

Use VectorDensityPlot to add a density plot of a scalar field:

Out[1]=1

Use StreamDensityPlot to use streams instead of vectors:

Out[2]=2

Use ListVectorDensityPlot to generate a density plot of a scalar field based on data:

Out[2]=2

Use ListStreamDensityPlot to plot streams instead of vectors:

Out[3]=3

Use LineIntegralConvolutionPlot to plot the line integral convolution of a vector field:

Out[1]=1
Wolfram Research (2020), ComplexStreamPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ComplexStreamPlot.html (updated 2020).
Wolfram Research (2020), ComplexStreamPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ComplexStreamPlot.html (updated 2020).

Text

Wolfram Research (2020), ComplexStreamPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ComplexStreamPlot.html (updated 2020).

Wolfram Research (2020), ComplexStreamPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ComplexStreamPlot.html (updated 2020).

CMS

Wolfram Language. 2020. "ComplexStreamPlot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/ref/ComplexStreamPlot.html.

Wolfram Language. 2020. "ComplexStreamPlot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/ref/ComplexStreamPlot.html.

APA

Wolfram Language. (2020). ComplexStreamPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ComplexStreamPlot.html

Wolfram Language. (2020). ComplexStreamPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ComplexStreamPlot.html

BibTeX

@misc{reference.wolfram_2025_complexstreamplot, author="Wolfram Research", title="{ComplexStreamPlot}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/ComplexStreamPlot.html}", note=[Accessed: 04-April-2025 ]}

@misc{reference.wolfram_2025_complexstreamplot, author="Wolfram Research", title="{ComplexStreamPlot}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/ComplexStreamPlot.html}", note=[Accessed: 04-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_complexstreamplot, organization={Wolfram Research}, title={ComplexStreamPlot}, year={2020}, url={https://reference.wolfram.com/language/ref/ComplexStreamPlot.html}, note=[Accessed: 04-April-2025 ]}

@online{reference.wolfram_2025_complexstreamplot, organization={Wolfram Research}, title={ComplexStreamPlot}, year={2020}, url={https://reference.wolfram.com/language/ref/ComplexStreamPlot.html}, note=[Accessed: 04-April-2025 ]}