DimensionReduction
✖
DimensionReduction
生成从 examplei 定义的空间投影到低维近似流形的 DimensionReducerFunction[…].
更多信息和选项




- DimensionReduction 可用于许多数据类型,包括数值、文本、声音和图像以及它们的组合.
- DimensionReduction[examples] 生成 DimensionReducerFunction[…] ,可应用于数据以执行降维.
- 每个 examplei 可以是单个数据元素、数据元素列表、数据元素关联或 Dataset 对象.
- DimensionReduction[examples] 自动选择与目标近似流形相应的维度.
- DimensionReduction[examples] 等价于 DimensionReduction[examples,Automatic].
- 在 DimensionReduction[…,props] 中,props 可以是单一属性或者是属性列表. 可能的属性包括:
-
"ReducerFunction" DimensionReducerFunction[…] (默认) "ReducedVectors" 通过把 examplei 降维获得的向量 "ReconstructedData" 降维和反演后重建 examples "ImputedData" 用插补值替换 examples 中的缺失值 - 可以给出以下选项:
-
FeatureExtractor Identity 怎样提取要学习的特征 FeatureNames Automatic 分配给 examplei 的元素的名称 FeatureTypes Automatic 假设 examplei 的元素的特征类型 Method Automatic 要使用哪种降维算法 PerformanceGoal Automatic 优化的性能方面 RandomSeeding 1234 内部应怎样对伪随机数字生成器进行播种 TargetDevice "CPU" 执行培训的目标设备 - PerformanceGoal 的可能设置包括:
-
"Memory" 降维函数的存储要求最小化 "Quality" 降维质量最大化 "Speed" 降维速度最大化 "TrainingSpeed" 生成降维器所用时间最小化 - PerformanceGoal{goal1,goal2,…} 将自动合并 goal1、goal2 等.
- Method 的可能设置包括:
-
Automatic 自动选择方法 "Autoencoder" 使用可训练的自动编码器 "Hadamard" 用 Hadamard 矩阵对数据进行投影 "Isomap" 等距映射 "LatentSemanticAnalysis" 潜在语义分析方法 "Linear" 自动选择最佳的线性方法 "LLE" 局部线性嵌入 "MultidimensionalScaling" 度量多维尺度分析 (metric multidimensional scaling) "PrincipalComponentsAnalysis" 主成分分析方法 "TSNE" -分布随机领域嵌入算法
"UMAP" 统一流形逼近与投影 (uniform manifold approximation and projection) - RandomSeeding 的可能设置包括:
-
Automatic 每次调用函数时都自动重新播种 Inherited 使用外部播种的随机数字 seed 明确指定整数或字符串作为种子 - DimensionReduction[…,FeatureExtractor"Minimal"] 表明内部预处理应尽量简单.
- DimensionReduction[DimensionReducerFunction[…],FeatureExtractorfe] 可用于预置 FeatureExtractorFunction[…] fe 于已存在的特征提取器.
范例
打开所有单元关闭所有单元基本范例 (3)常见实例总结

https://wolfram.com/xid/0g7huc91olu-kaykrr


https://wolfram.com/xid/0g7huc91olu-tv7nk


https://wolfram.com/xid/0g7huc91olu-nr629p


https://wolfram.com/xid/0g7huc91olu-3wsyk

https://wolfram.com/xid/0g7huc91olu-b1547u


https://wolfram.com/xid/0g7huc91olu-dyx9c4


https://wolfram.com/xid/0g7huc91olu-hzcxce


https://wolfram.com/xid/0g7huc91olu-epyt9q


https://wolfram.com/xid/0g7huc91olu-dhjie

范围 (7)标准用法实例范围调查

https://wolfram.com/xid/0g7huc91olu-huaxhr

https://wolfram.com/xid/0g7huc91olu-c65cjt


https://wolfram.com/xid/0g7huc91olu-cf5jxk


https://wolfram.com/xid/0g7huc91olu-gf16jr


https://wolfram.com/xid/0g7huc91olu-cnxph5

https://wolfram.com/xid/0g7huc91olu-gl4q6


https://wolfram.com/xid/0g7huc91olu-ess5kq

https://wolfram.com/xid/0g7huc91olu-cumxc3


https://wolfram.com/xid/0g7huc91olu-cj04um

https://wolfram.com/xid/0g7huc91olu-p24ty9


https://wolfram.com/xid/0g7huc91olu-dg4x2f


https://wolfram.com/xid/0g7huc91olu-cb1vm3

https://wolfram.com/xid/0g7huc91olu-dr93ig


https://wolfram.com/xid/0g7huc91olu-lkgrsz


https://wolfram.com/xid/0g7huc91olu-d7xhgy


https://wolfram.com/xid/0g7huc91olu-e2vx9p


https://wolfram.com/xid/0g7huc91olu-isface

对 DateObject 列表培训降维器:

https://wolfram.com/xid/0g7huc91olu-dkyi1j

减少新的 DateObject 的维数:

https://wolfram.com/xid/0g7huc91olu-fsqfno


https://wolfram.com/xid/0g7huc91olu-1rcwb


https://wolfram.com/xid/0g7huc91olu-b8ggz9


https://wolfram.com/xid/0g7huc91olu-ik1mpy


https://wolfram.com/xid/0g7huc91olu-gnxegg


https://wolfram.com/xid/0g7huc91olu-ge5ah6

选项 (7)各选项的常用值和功能
FeatureExtractor (1)
FeatureNames (1)
FeatureTypes (1)

https://wolfram.com/xid/0g7huc91olu-gja5hk

第一个特征被解释为数值. 使用 FeatureTypes 加强第一个特征解释为标称值:

https://wolfram.com/xid/0g7huc91olu-c2486r


https://wolfram.com/xid/0g7huc91olu-gykd0

Method (3)
使用 t-SNE 方法对 Fisher 虹膜数据集的特征产生一个降维函数:

https://wolfram.com/xid/0g7huc91olu-g33xx4

https://wolfram.com/xid/0g7huc91olu-qxhomk


https://wolfram.com/xid/0g7huc91olu-oyz0v

https://wolfram.com/xid/0g7huc91olu-i4xtc1

https://wolfram.com/xid/0g7huc91olu-pppim5


https://wolfram.com/xid/0g7huc91olu-cte7kj


https://wolfram.com/xid/0g7huc91olu-hc3c1y


https://wolfram.com/xid/0g7huc91olu-cqcmk3

https://wolfram.com/xid/0g7huc91olu-2ob0kj

用随机噪声生成一个非线性数据流型,称之为 Swiss-roll 数据集:

https://wolfram.com/xid/0g7huc91olu-7bti1r

https://wolfram.com/xid/0g7huc91olu-0djua7


https://wolfram.com/xid/0g7huc91olu-7nkc10


https://wolfram.com/xid/0g7huc91olu-enwdqw


https://wolfram.com/xid/0g7huc91olu-lva4bs


https://wolfram.com/xid/0g7huc91olu-bh8os5

TargetDevice (1)
使用在系统默认 GPU 上的完全连接的 "AutoEncoder" 培训约简函数并查看 AbsoluteTiming:

https://wolfram.com/xid/0g7huc91olu-nni7sq

https://wolfram.com/xid/0g7huc91olu-x7frfj
应用 (5)用该函数可以解决的问题范例
数据集可视化 (1)
从 ExampleData 加载费雪鸢尾花卉数据集:

https://wolfram.com/xid/0g7huc91olu-cegyu9

https://wolfram.com/xid/0g7huc91olu-y1p1r


https://wolfram.com/xid/0g7huc91olu-e8vs7s


https://wolfram.com/xid/0g7huc91olu-ck3kn0


https://wolfram.com/xid/0g7huc91olu-czdjx

https://wolfram.com/xid/0g7huc91olu-bxoooj

https://wolfram.com/xid/0g7huc91olu-ck8dgi

头部姿势估计 (1)

https://wolfram.com/xid/0g7huc91olu-w5fdv9

产生一个带有随机视点的许多头的数据集,因而创建不同的头姿势:

https://wolfram.com/xid/0g7huc91olu-vt62ci

https://wolfram.com/xid/0g7huc91olu-4qtsfe


https://wolfram.com/xid/0g7huc91olu-g2w0io
从 50×50 输入空间看可视化图像的二维表示,两条轴表示上下和前端的姿势:

https://wolfram.com/xid/0g7huc91olu-4bpmxs

图像插补 (1)
从 ExampleData 加载 MNIST 数据集,并保留图像:

https://wolfram.com/xid/0g7huc91olu-fpy5rn

https://wolfram.com/xid/0g7huc91olu-b9zac2


https://wolfram.com/xid/0g7huc91olu-lwqeek

https://wolfram.com/xid/0g7huc91olu-ky4io

https://wolfram.com/xid/0g7huc91olu-02xzf


https://wolfram.com/xid/0g7huc91olu-cudvv9


https://wolfram.com/xid/0g7huc91olu-ie8nma

https://wolfram.com/xid/0g7huc91olu-d15eit


https://wolfram.com/xid/0g7huc91olu-kq3dc

https://wolfram.com/xid/0g7huc91olu-dw12ef

用 Missing[] 替换向量的某些值,并可视化:

https://wolfram.com/xid/0g7huc91olu-c9gyzb


https://wolfram.com/xid/0g7huc91olu-bh1mpm


https://wolfram.com/xid/0g7huc91olu-klbpl5

推荐系统 (1)
得到 SparseArray 形式的用户影评:

https://wolfram.com/xid/0g7huc91olu-d2s83h

数据集由 100 个用户和 10 部影片组成. 评分范围从 1 到 5,并用 Missing[] 表示未知评分:

https://wolfram.com/xid/0g7huc91olu-gg3m17


https://wolfram.com/xid/0g7huc91olu-dhgf93

https://wolfram.com/xid/0g7huc91olu-d9ccbp


https://wolfram.com/xid/0g7huc91olu-e1hix6


https://wolfram.com/xid/0g7huc91olu-kq4tg5

图像搜索 (1)

https://wolfram.com/xid/0g7huc91olu-eoy3bo

https://wolfram.com/xid/0g7huc91olu-ilbcgu

在降维空间产生一个 NearestFunction:

https://wolfram.com/xid/0g7huc91olu-fd8vm9

使用 NearestFunction,构建显示数据集最近图像的函数:

https://wolfram.com/xid/0g7huc91olu-pz7n2o


https://wolfram.com/xid/0g7huc91olu-raz7u


https://wolfram.com/xid/0g7huc91olu-d1zvqk


https://wolfram.com/xid/0g7huc91olu-id8awy


https://wolfram.com/xid/0g7huc91olu-cgblc7

https://wolfram.com/xid/0g7huc91olu-bzg25l

Wolfram Research (2015),DimensionReduction,Wolfram 语言函数,https://reference.wolfram.com/language/ref/DimensionReduction.html (更新于 2020 年).
文本
Wolfram Research (2015),DimensionReduction,Wolfram 语言函数,https://reference.wolfram.com/language/ref/DimensionReduction.html (更新于 2020 年).
Wolfram Research (2015),DimensionReduction,Wolfram 语言函数,https://reference.wolfram.com/language/ref/DimensionReduction.html (更新于 2020 年).
CMS
Wolfram 语言. 2015. "DimensionReduction." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2020. https://reference.wolfram.com/language/ref/DimensionReduction.html.
Wolfram 语言. 2015. "DimensionReduction." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2020. https://reference.wolfram.com/language/ref/DimensionReduction.html.
APA
Wolfram 语言. (2015). DimensionReduction. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/DimensionReduction.html 年
Wolfram 语言. (2015). DimensionReduction. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/DimensionReduction.html 年
BibTeX
@misc{reference.wolfram_2025_dimensionreduction, author="Wolfram Research", title="{DimensionReduction}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/DimensionReduction.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_dimensionreduction, organization={Wolfram Research}, title={DimensionReduction}, year={2020}, url={https://reference.wolfram.com/language/ref/DimensionReduction.html}, note=[Accessed: 04-April-2025
]}