WOLFRAM

ComplexVectorPlot[f,{z,zmin,zmax}]

generates a vector plot of the vector field {Re[f],Im[f]} over the complex rectangle with corners zmin and zmax.

ComplexVectorPlot[{f1,f2,},{z,zmin,zmax}]

plots several vector fields.

Details and Options

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Plot the vector field for with color indicating the vector magnitude:

Out[1]=1

Include a legend for the vector magnitudes:

Out[1]=1

Use a drop-shaped marker to represent the vectors:

Out[1]=1

Scope  (19)Survey of the scope of standard use cases

Sampling  (7)

Plot a vector field with vectors placed with specified densities:

Out[1]=1

Sample the vector field on a regular grid of points:

Out[1]=1

Sample the vector field on an irregular mesh:

Out[2]=2

Specify how many vector points to use in each direction:

Out[1]=1

Plot the vectors that go through a set of seed points:

Out[2]=2

Plot vectors over a specified region:

Out[1]=1

Plot the fields for a function and its conjugate:

Out[1]=1

Use Evaluate to evaluate the vector field symbolically before numeric assignment:

Out[1]=1

Presentation  (12)

Plot a vector field with automatically scaled arrows:

Out[1]=1

Plot a vector field with arrows of specified size:

Out[1]=1

Draw the arrows starting from the sample points:

Out[2]=2

Draw the arrows without the arrowheads:

Out[1]=1

Use drop-like shapes instead of arrows:

Out[2]=2

Change the overall shape of the markers:

Out[1]=1

Change the default color function:

Out[1]=1

Include a legend:

Out[1]=1

Vary the arrow sizes instead of the colors:

Out[1]=1

Set the style for multiple vector fields:

Out[1]=1

Apply vector style:

Out[1]=1

Set the style for multiple vector fields:

Out[1]=1

Use a theme with simple ticks and grid lines:

Out[1]=1

Options  (65)Common values & functionality for each option

Background  (1)

Use a colored background:

Out[1]=1

ClippingStyle  (4)

By default, extremely short and extremely long vectors are displayed:

Out[1]=1

Use ClippingStyleNone to remove extreme vectors from the plot:

Out[1]=1

Style the clipped vectors:

Out[1]=1

Style the short and long clipped vectors differently:

Out[1]=1

EvaluationMonitor  (2)

Show where the vector field function is sampled:

Out[1]=1

Count the number of times the vector field function is evaluated:

Out[1]=1

PlotLegends  (5)

Include a legend for the vector norms:

Out[1]=1

Use the expressions in the legend for multiple vector functions:

Out[1]=1

Specify the legend labels for multiple functions:

Out[1]=1

Control the placement of the legend:

Out[1]=1

Use a legend with placeholders:

Out[1]=1

PlotRange  (5)

The full plot range is used by default:

Out[1]=1

Specify an explicit limit for both real and imaginary ranges:

Out[1]=1

Specify an explicit real range:

Out[1]=1

Specify an explicit imaginary range:

Out[1]=1

Specify different real and imaginary ranges:

Out[1]=1

PlotTheme  (2)

Use a theme:

Out[2]=2

Change the vector style:

Out[1]=1

RegionBoundaryStyle  (5)

Show the region defined by a region function:

Out[1]=1

The boundaries of full rectangular regions are not shown:

Out[1]=1

Use None to not show the boundary:

Out[1]=1

Omit the interior filling as well:

Out[2]=2

Specify a style for the boundary:

Out[1]=1

Specify a style for full rectangular regions:

Out[1]=1

RegionFillingStyle  (5)

Show the region defined by a region function:

Out[1]=1

The interiors of full rectangular regions are not shown:

Out[1]=1

Use None to not show the interior filling:

Out[1]=1

Omit the boundary curve as well:

Out[2]=2

Specify a style for the interior filling:

Out[1]=1

Specify a style for full rectangular region:

Out[1]=1

RegionFunction  (2)

Restrict the plotting region based on :

Out[1]=1

Restrict the plotting region based on :

Out[1]=1

VectorAspectRatio  (2)

The default ratio of the width to the length of the vector marker is 1/4:

Out[1]=1

Modify the ratio of the width to the length of the vector marker:

Out[1]=1

VectorColorFunction  (5)

Vectors are colored according to their norms by default:

Out[1]=1

Choose the color scheme for coloring vectors by their norms:

Out[1]=1

Use any named color gradient from ColorData:

Out[1]=1

Color the vectors according to the real part of its location:

Out[1]=1

Color the vectors according to the real part of the function:

Out[1]=1

VectorColorFunctionScaling  (2)

By default, scaled values are used:

Out[1]=1

Use VectorColorFunctionScalingFalse to get unscaled values:

Out[1]=1

VectorMarkers  (4)

Vectors are drawn as arrows by default:

Out[1]=1

Use a named appearance to draw the vectors:

Out[2]=2

Use different markers for different vector fields:

Out[1]=1

By default, markers are centered on vector points:

Out[2]=2

Start the vectors at the points:

Out[3]=3

End the vectors at the points:

Out[4]=4

VectorPoints  (5)

Use automatically determined vector points:

Out[2]=2

Use symbolic names to specify the set of field vectors:

Out[1]=1

Create a hexagonal grid of field vectors with the same number of arrows in the real and imaginary directions:

Out[1]=1

Create a hexagonal grid of field vectors with a different number of arrows in the real and imaginary directions:

Out[1]=1

Specify a list of points for showing field vectors:

Out[1]=1

VectorRange  (6)

By default, vector ranges are determined automatically:

Out[1]=1

Plot vectors with magnitudes between 0.2 and 2:

Out[1]=1

Plot vectors with magnitudes between 0.2 and 2 with scaled arrow lengths:

Out[1]=1

Style the clipped vectors:

Out[1]=1

Plot scaled vectors with all lengths:

Out[1]=1

Increase the lengths of the smaller vectors:

Out[1]=1

VectorScaling  (2)

By default, VectorScaling is None:

Out[1]=1

Use automatic scaling to scale the length of vectors:

Out[1]=1

VectorSizes  (2)

Vector markers have automatically scaled lengths to prevent any vectors from being too small and to keep them from overlapping:

Out[1]=1

Specify a minimum and maximum scaled vector size:

Out[1]=1

VectorStyle  (6)

Set the style for the displayed vectors:

Out[1]=1

Set the style for multiple functions:

Out[1]=1

Use Arrowheads to specify an explicit style of the arrowheads:

Out[1]=1

Specify both arrow tail and head:

Out[1]=1

Graphics primitives without Arrowheads are scaled based on the vector scale:

Out[1]=1

Change the scaling using the VectorScaling option:

Out[1]=1

Applications  (7)Sample problems that can be solved with this function

For a complex function f, plot {Re[f],Im[f]}:

Out[1]=1

The vector length increases with Abs[f] and the orientation is determined by Arg[f]:

Out[1]=1

Identify poles and zeros. Poles are visible at and :

Out[1]=1

The zeros at and are more readily visible if the vectors are scaled:

Out[2]=2

Vectors in the field rotate twice along the unit circle surrounding the zero of the function at the origin, which implies that has a double zero at the origin:

Out[1]=1
Out[3]=3

The function has a pole of order 2 at since has a double zero:

Out[2]=2

Specify a direction field and several solutions for the complex initial value problem , :

Out[1]=1

The Pólya field of an analytic function is both divergence and curl free:

Out[1]=1
Out[2]=2
Out[2]=2
Out[2]=2

Examine partial sums of an infinite series:

Out[2]=2

Properties & Relations  (15)Properties of the function, and connections to other functions

ComplexVectorPlot is a special case of VectorPlot:

Out[1]=1

ComplexStreamPlot plots complex numbers as streamlines:

Out[1]=1

ComplexStreamPlot is a special case of StreamPlot:

Out[2]=2

Use VectorDisplacementPlot to visualize the effect of a complex function on a specified region:

Out[1]=1

Use VectorPlot3D and StreamPlot3D to visualize 3D vector fields:

Out[1]=1

ComplexContourPlot plots curves over the complexes:

Out[1]=1

ComplexRegionPlot plots regions over the complexes:

Out[1]=1

ComplexPlot shows the argument and magnitude of a function using color:

Out[1]=1

Use ComplexPlot3D to use the axis for the magnitude:

Out[1]=1

Use ComplexArrayPlot for arrays of complex numbers:

Out[1]=1

Use ReImPlot and AbsArgPlot to plot complex values over the real numbers:

Out[1]=1
Out[2]=2

Use ComplexListPlot to show the location of complex numbers in the plane:

Out[1]=1

Use ListVectorPlot for plotting data:

Out[2]=2

Use ListStreamPlot to plot streams instead of vectors:

Out[3]=3

Use VectorDensityPlot to add a density plot of a scalar field:

Out[1]=1

Use StreamDensityPlot to use streams instead of vectors:

Out[2]=2

Use ListVectorDensityPlot to generate a density plot of a scalar field based on data:

Out[2]=2

Use ListStreamDensityPlot to plot streams instead of vectors:

Out[3]=3

Use LineIntegralConvolutionPlot to plot the line integral convolution of a vector field:

Out[1]=1
Wolfram Research (2020), ComplexVectorPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ComplexVectorPlot.html.
Wolfram Research (2020), ComplexVectorPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ComplexVectorPlot.html.

Text

Wolfram Research (2020), ComplexVectorPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ComplexVectorPlot.html.

Wolfram Research (2020), ComplexVectorPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ComplexVectorPlot.html.

CMS

Wolfram Language. 2020. "ComplexVectorPlot." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ComplexVectorPlot.html.

Wolfram Language. 2020. "ComplexVectorPlot." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ComplexVectorPlot.html.

APA

Wolfram Language. (2020). ComplexVectorPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ComplexVectorPlot.html

Wolfram Language. (2020). ComplexVectorPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ComplexVectorPlot.html

BibTeX

@misc{reference.wolfram_2025_complexvectorplot, author="Wolfram Research", title="{ComplexVectorPlot}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/ComplexVectorPlot.html}", note=[Accessed: 04-April-2025 ]}

@misc{reference.wolfram_2025_complexvectorplot, author="Wolfram Research", title="{ComplexVectorPlot}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/ComplexVectorPlot.html}", note=[Accessed: 04-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_complexvectorplot, organization={Wolfram Research}, title={ComplexVectorPlot}, year={2020}, url={https://reference.wolfram.com/language/ref/ComplexVectorPlot.html}, note=[Accessed: 04-April-2025 ]}

@online{reference.wolfram_2025_complexvectorplot, organization={Wolfram Research}, title={ComplexVectorPlot}, year={2020}, url={https://reference.wolfram.com/language/ref/ComplexVectorPlot.html}, note=[Accessed: 04-April-2025 ]}