LineIntegrate
更多信息和选项




- 线积分也称为曲线积分和功积分.
- 标量线积分沿曲线对标量函数进行积分,通常用于计算曲线的长度、质量和电荷.
- 矢量线积分用于计算矢量函数沿曲线在其切线方向移动时所做的功. 典型的矢量函数包括力场、电场和流体速度场.
- 函数 f 沿 curve
的标量线积分由下式给出:
- 其中
是参数曲线段的度量.
- 标量线积分与 curve 的参数化和方向无关. 任何一维 RegionQ 对象都可以用作 curve.
- 函数 F 沿曲线 curve
的矢量线积分由下式给出:
- 其中
是矢量函数
在切线方向上的投影,因此只有切线方向的分量被积分.
- 矢量线积分与曲线的参数化无关,但确实取决于曲线的方向.
- 曲线的方向由曲线上的切线矢量场
给出.
- 对于参数曲线 ParametricRegion[{r1[u],…,rn[u]},…],切矢量场
取作 ∂ur[u].
中具有假定切线方向的特殊曲线包括:
-
Line[{p1,p2,…}] 方向按照点从 p1 到 p2 等给出的顺序. HalfLine[{p1,p2}]
HalfLine[p,v]方向是从 p1 到 p2,或在 v 方向 InfiniteLine[{p1,p2}]
InfiniteLine[p,v]方向是从 p1 到 p2,或在 v 方向 Circle[p,r] 方向是逆时针 中具有假定切线方向的特殊曲线包括:
-
Line[{p1,p2,…}] 方向按照点从 p1 到 p2 等给出的顺序 HalfLine[{p1,p2}]
HalfLine[p,v]方向是从 p1 到 p2,或在 v 方向 InfiniteLine[{p1,p2}]
InfiniteLine[p,v]方向是从 p1 到 p2,或在 v 方向 中具有假定切线方向的特殊曲线包括:
-
Line[{p1,p2,…}] 方向按照给定的点的顺序 HalfLine[{p1,p2}]
HalfLine[p,v]方向是从 p1 到 p2 方向由 v 给出 InfiniteLine[{p1,p2}]
InfiniteLine[p,v]方向是从 p1 到 p2 方向由 v 给出 - 沿 curve 的坐标可以使用 VectorSymbol 指定. »
- 可以给出以下选项:
-
Assumptions $Assumptions 关于参数的假设 Direction Automatic 曲线的方向 GenerateConditions Automatic 是否生成涉及参数条件的答案 WorkingPrecision Automatic 内部计算中使用的精度 - 当输入涉及不精确的数量时,LineIntegrate 使用符号和数值方法的组合.



范例
打开所有单元关闭所有单元基本范例 (7)常见实例总结

https://wolfram.com/xid/0tz2vvte-wgh14


https://wolfram.com/xid/0tz2vvte-efhis


https://wolfram.com/xid/0tz2vvte-b39m0t


https://wolfram.com/xid/0tz2vvte-cxreh9

https://wolfram.com/xid/0tz2vvte-b6hpn2

https://wolfram.com/xid/0tz2vvte-vbcbci


https://wolfram.com/xid/0tz2vvte-bsle4e


https://wolfram.com/xid/0tz2vvte-kunje1

https://wolfram.com/xid/0tz2vvte-yb0jy

https://wolfram.com/xid/0tz2vvte-fdottv


https://wolfram.com/xid/0tz2vvte-fazj49


https://wolfram.com/xid/0tz2vvte-y6ac2

https://wolfram.com/xid/0tz2vvte-d6518t

https://wolfram.com/xid/0tz2vvte-mom2ti


https://wolfram.com/xid/0tz2vvte-gnemv2

使用 VectorSymbol:

https://wolfram.com/xid/0tz2vvte-22o870


https://wolfram.com/xid/0tz2vvte-4c1t06

范围 (32)标准用法实例范围调查
基本用法 (4)

https://wolfram.com/xid/0tz2vvte-baegm

https://wolfram.com/xid/0tz2vvte-dj0l4n


https://wolfram.com/xid/0tz2vvte-iego4o

https://wolfram.com/xid/0tz2vvte-dgzoa


https://wolfram.com/xid/0tz2vvte-fvm42h

https://wolfram.com/xid/0tz2vvte-2uc1q0

https://wolfram.com/xid/0tz2vvte-dczkh5


https://wolfram.com/xid/0tz2vvte-jl915i

https://wolfram.com/xid/0tz2vvte-ija80r

https://wolfram.com/xid/0tz2vvte-b2z6oz

标量函数 (11)

https://wolfram.com/xid/0tz2vvte-l13lp

https://wolfram.com/xid/0tz2vvte-mycysa

https://wolfram.com/xid/0tz2vvte-nh3xia


https://wolfram.com/xid/0tz2vvte-j8wso6


https://wolfram.com/xid/0tz2vvte-bd435

https://wolfram.com/xid/0tz2vvte-b3o2rm

https://wolfram.com/xid/0tz2vvte-kz4b88


https://wolfram.com/xid/0tz2vvte-9hmgjs


https://wolfram.com/xid/0tz2vvte-fh69op

https://wolfram.com/xid/0tz2vvte-9ds6h

https://wolfram.com/xid/0tz2vvte-xrtb9p


https://wolfram.com/xid/0tz2vvte-cnv1kk


https://wolfram.com/xid/0tz2vvte-m4o39h

https://wolfram.com/xid/0tz2vvte-l7rdnw

https://wolfram.com/xid/0tz2vvte-pknu5


https://wolfram.com/xid/0tz2vvte-m7pk9h


https://wolfram.com/xid/0tz2vvte-dlzo2p

https://wolfram.com/xid/0tz2vvte-hvwhpb

https://wolfram.com/xid/0tz2vvte-j2w9b4


https://wolfram.com/xid/0tz2vvte-cc46mp

https://wolfram.com/xid/0tz2vvte-r6c7k0

https://wolfram.com/xid/0tz2vvte-bqu69y


https://wolfram.com/xid/0tz2vvte-wx1n4i


https://wolfram.com/xid/0tz2vvte-qegwza

https://wolfram.com/xid/0tz2vvte-klurcc

https://wolfram.com/xid/0tz2vvte-bxam5u


https://wolfram.com/xid/0tz2vvte-qbex0i


https://wolfram.com/xid/0tz2vvte-muivi

https://wolfram.com/xid/0tz2vvte-g4biy4

https://wolfram.com/xid/0tz2vvte-ba2yp8


https://wolfram.com/xid/0tz2vvte-6i9350


https://wolfram.com/xid/0tz2vvte-mzxcp

https://wolfram.com/xid/0tz2vvte-dsdy2

https://wolfram.com/xid/0tz2vvte-deqs9f


https://wolfram.com/xid/0tz2vvte-h3ioxf


https://wolfram.com/xid/0tz2vvte-g1xt

https://wolfram.com/xid/0tz2vvte-znq7i

https://wolfram.com/xid/0tz2vvte-d7jsed


https://wolfram.com/xid/0tz2vvte-85xvvk


https://wolfram.com/xid/0tz2vvte-m95llw

https://wolfram.com/xid/0tz2vvte-fckzi6

https://wolfram.com/xid/0tz2vvte-l3kcg0


https://wolfram.com/xid/0tz2vvte-mrdela

矢量函数 (12)

https://wolfram.com/xid/0tz2vvte-ccjc0k

https://wolfram.com/xid/0tz2vvte-fydlgz

https://wolfram.com/xid/0tz2vvte-gc18yo


https://wolfram.com/xid/0tz2vvte-g7fc9c


https://wolfram.com/xid/0tz2vvte-lydalh

https://wolfram.com/xid/0tz2vvte-hs4guv

https://wolfram.com/xid/0tz2vvte-btxs94


https://wolfram.com/xid/0tz2vvte-r2iwfi


https://wolfram.com/xid/0tz2vvte-bwx0qm

https://wolfram.com/xid/0tz2vvte-mc1w1h

https://wolfram.com/xid/0tz2vvte-m7pa1


https://wolfram.com/xid/0tz2vvte-pq7hlw


https://wolfram.com/xid/0tz2vvte-lvgnkd

https://wolfram.com/xid/0tz2vvte-6qdxp2

https://wolfram.com/xid/0tz2vvte-bmkrqd


https://wolfram.com/xid/0tz2vvte-hhgy88


https://wolfram.com/xid/0tz2vvte-dwyt0f

https://wolfram.com/xid/0tz2vvte-llmhwp

https://wolfram.com/xid/0tz2vvte-coa1wk


https://wolfram.com/xid/0tz2vvte-ds4x1k


https://wolfram.com/xid/0tz2vvte-f7swwt

https://wolfram.com/xid/0tz2vvte-okmv52

https://wolfram.com/xid/0tz2vvte-b1einm


https://wolfram.com/xid/0tz2vvte-s3e49n


https://wolfram.com/xid/0tz2vvte-bn1dck

https://wolfram.com/xid/0tz2vvte-gpy6tr

https://wolfram.com/xid/0tz2vvte-f66hr5


https://wolfram.com/xid/0tz2vvte-4jb96f


https://wolfram.com/xid/0tz2vvte-cn61wk

https://wolfram.com/xid/0tz2vvte-hem7o

https://wolfram.com/xid/0tz2vvte-i9isvo


https://wolfram.com/xid/0tz2vvte-9dejwe


https://wolfram.com/xid/0tz2vvte-d6sexg

https://wolfram.com/xid/0tz2vvte-t49z9

https://wolfram.com/xid/0tz2vvte-bcue0h


https://wolfram.com/xid/0tz2vvte-ypmogi


https://wolfram.com/xid/0tz2vvte-c1rrfp

https://wolfram.com/xid/0tz2vvte-bfc9kz

https://wolfram.com/xid/0tz2vvte-jkj91w


https://wolfram.com/xid/0tz2vvte-gmjt6a


https://wolfram.com/xid/0tz2vvte-hmyjx

https://wolfram.com/xid/0tz2vvte-hqee1l

https://wolfram.com/xid/0tz2vvte-bwn54d


https://wolfram.com/xid/0tz2vvte-0eg0p7


https://wolfram.com/xid/0tz2vvte-catmw5

https://wolfram.com/xid/0tz2vvte-cvy941

特殊曲线 (4)

https://wolfram.com/xid/0tz2vvte-mnralz

https://wolfram.com/xid/0tz2vvte-mygh9f

https://wolfram.com/xid/0tz2vvte-b9f6mj


https://wolfram.com/xid/0tz2vvte-9bghqr


https://wolfram.com/xid/0tz2vvte-fhpn9c

https://wolfram.com/xid/0tz2vvte-2a7kn3

https://wolfram.com/xid/0tz2vvte-izgoo6


https://wolfram.com/xid/0tz2vvte-v1hdiv


https://wolfram.com/xid/0tz2vvte-de1rtq

https://wolfram.com/xid/0tz2vvte-0fl2h

https://wolfram.com/xid/0tz2vvte-wbvxs


https://wolfram.com/xid/0tz2vvte-t4h3kk


https://wolfram.com/xid/0tz2vvte-bx3drr

https://wolfram.com/xid/0tz2vvte-y9mm4y

https://wolfram.com/xid/0tz2vvte-ben7mo


https://wolfram.com/xid/0tz2vvte-ezh8fk

参数曲线 (1)

https://wolfram.com/xid/0tz2vvte-n3vg1

https://wolfram.com/xid/0tz2vvte-g2sv9j

https://wolfram.com/xid/0tz2vvte-crby8o


https://wolfram.com/xid/0tz2vvte-2jvjfo

选项 (5)各选项的常用值和功能
Assumptions (1)
选项 Assumptions 可用于参数:

https://wolfram.com/xid/0tz2vvte-u4ym8p


https://wolfram.com/xid/0tz2vvte-q8qfq8

Direction (1)
闭合圆形路径的默认 Direction 是逆时针方向:

https://wolfram.com/xid/0tz2vvte-6pwtgy

https://wolfram.com/xid/0tz2vvte-18oc0m

https://wolfram.com/xid/0tz2vvte-g533wy


https://wolfram.com/xid/0tz2vvte-qqzd4r


https://wolfram.com/xid/0tz2vvte-porctd

可以使用选项 Direction 选择顺时针方向:

https://wolfram.com/xid/0tz2vvte-ewbd0d

GenerateConditions (1)
LineIntegrate 可以使用符号参数:

https://wolfram.com/xid/0tz2vvte-bzpfm2


https://wolfram.com/xid/0tz2vvte-eey2q

WorkingPrecision (2)
如果指定了 WorkingPrecision,则给出数值结果:

https://wolfram.com/xid/0tz2vvte-jjdjh


https://wolfram.com/xid/0tz2vvte-fncbsx


https://wolfram.com/xid/0tz2vvte-y8nhp

应用 (27)用该函数可以解决的问题范例
大学微积分 (10)

https://wolfram.com/xid/0tz2vvte-dphhmo

https://wolfram.com/xid/0tz2vvte-fbkrbl

https://wolfram.com/xid/0tz2vvte-ffy04y


https://wolfram.com/xid/0tz2vvte-b2wrc

https://wolfram.com/xid/0tz2vvte-cyt8j

https://wolfram.com/xid/0tz2vvte-brzwbm


https://wolfram.com/xid/0tz2vvte-prmc7

https://wolfram.com/xid/0tz2vvte-hy12c

https://wolfram.com/xid/0tz2vvte-jp548


https://wolfram.com/xid/0tz2vvte-dlas2

https://wolfram.com/xid/0tz2vvte-l5rlqk

https://wolfram.com/xid/0tz2vvte-czf78e


https://wolfram.com/xid/0tz2vvte-cj9ike

https://wolfram.com/xid/0tz2vvte-lbutzf

https://wolfram.com/xid/0tz2vvte-dn4od7


https://wolfram.com/xid/0tz2vvte-bkdb9x

https://wolfram.com/xid/0tz2vvte-dprydj

https://wolfram.com/xid/0tz2vvte-dzrh6b


https://wolfram.com/xid/0tz2vvte-ccyook

https://wolfram.com/xid/0tz2vvte-is6kos

https://wolfram.com/xid/0tz2vvte-ey1oth


https://wolfram.com/xid/0tz2vvte-bdkf8g

https://wolfram.com/xid/0tz2vvte-mo4srn


https://wolfram.com/xid/0tz2vvte-dw8ynz

https://wolfram.com/xid/0tz2vvte-j18m8z


https://wolfram.com/xid/0tz2vvte-o9s72f

https://wolfram.com/xid/0tz2vvte-l79cx

https://wolfram.com/xid/0tz2vvte-ew1kq9

长度 (3)

https://wolfram.com/xid/0tz2vvte-08zr7


https://wolfram.com/xid/0tz2vvte-bexz7f

https://wolfram.com/xid/0tz2vvte-cv3rwv


https://wolfram.com/xid/0tz2vvte-bpx00w

长度也可以用 RegionMeasure 计算:

https://wolfram.com/xid/0tz2vvte-bgsck1


https://wolfram.com/xid/0tz2vvte-c0ghhc

https://wolfram.com/xid/0tz2vvte-lg8nxo


https://wolfram.com/xid/0tz2vvte-k6ueio

面积 (5)

https://wolfram.com/xid/0tz2vvte-c1r9xf


https://wolfram.com/xid/0tz2vvte-ie3l8j

https://wolfram.com/xid/0tz2vvte-c66kel

https://wolfram.com/xid/0tz2vvte-2kqqdf


https://wolfram.com/xid/0tz2vvte-f8xf23


https://wolfram.com/xid/0tz2vvte-bamt1

https://wolfram.com/xid/0tz2vvte-cc4hz7


https://wolfram.com/xid/0tz2vvte-e575at

https://wolfram.com/xid/0tz2vvte-ba7cso


https://wolfram.com/xid/0tz2vvte-8bc230


https://wolfram.com/xid/0tz2vvte-becr8f

https://wolfram.com/xid/0tz2vvte-bgx23p


https://wolfram.com/xid/0tz2vvte-xxmy9s

力所做的功 (4)

https://wolfram.com/xid/0tz2vvte-h0fws9

https://wolfram.com/xid/0tz2vvte-f8lvzh

在电荷密度为 的带电无限导线的电场中,当电荷
从 {1,1,0} 移动到 {2,2,0}时,电力所做的功:

https://wolfram.com/xid/0tz2vvte-okzl61

https://wolfram.com/xid/0tz2vvte-c4w2uj


https://wolfram.com/xid/0tz2vvte-1hq

https://wolfram.com/xid/0tz2vvte-ls3zg6

https://wolfram.com/xid/0tz2vvte-fg2iaj

电荷 在电荷
的电场中沿
轴从
移动到无穷大时,电力所做的功:

https://wolfram.com/xid/0tz2vvte-ibh1qw

https://wolfram.com/xid/0tz2vvte-gkzon

https://wolfram.com/xid/0tz2vvte-ic1hwy

质心 (2)

https://wolfram.com/xid/0tz2vvte-kjyubs

https://wolfram.com/xid/0tz2vvte-cla46i


https://wolfram.com/xid/0tz2vvte-d6c4x7


https://wolfram.com/xid/0tz2vvte-h2sx6e


https://wolfram.com/xid/0tz2vvte-gugxww

https://wolfram.com/xid/0tz2vvte-uwprbb


https://wolfram.com/xid/0tz2vvte-v9wcd


https://wolfram.com/xid/0tz2vvte-c3ka3i


https://wolfram.com/xid/0tz2vvte-ccyo5m

经典定理 (3)
如果矢量场的线积分只取决于端点的值,而不取决于路径,那么这个矢量场为保守的(conservative):

https://wolfram.com/xid/0tz2vvte-cxv4vv

https://wolfram.com/xid/0tz2vvte-qa2cwh

https://wolfram.com/xid/0tz2vvte-7ov0f8


https://wolfram.com/xid/0tz2vvte-z3ulde

https://wolfram.com/xid/0tz2vvte-oam40t


https://wolfram.com/xid/0tz2vvte-npyog4


https://wolfram.com/xid/0tz2vvte-vlcftb

https://wolfram.com/xid/0tz2vvte-idcxvk


https://wolfram.com/xid/0tz2vvte-q4zynk

https://wolfram.com/xid/0tz2vvte-pc7irv


https://wolfram.com/xid/0tz2vvte-t3oth7

https://wolfram.com/xid/0tz2vvte-6bz89q

https://wolfram.com/xid/0tz2vvte-legus

这等于以曲线为边界的任何曲面上 的 Curl 的曲面积分:

https://wolfram.com/xid/0tz2vvte-9ebo6t

https://wolfram.com/xid/0tz2vvte-gann63


https://wolfram.com/xid/0tz2vvte-87q0pr

属性和关系 (5)函数的属性及与其他函数的关联
如果符号计算失败,应用 N[LineIntegrate[...]] 获得数值解:

https://wolfram.com/xid/0tz2vvte-ehiy91

https://wolfram.com/xid/0tz2vvte-eyrfgg

https://wolfram.com/xid/0tz2vvte-giu7qi


https://wolfram.com/xid/0tz2vvte-fd11ec


https://wolfram.com/xid/0tz2vvte-lbq52m

https://wolfram.com/xid/0tz2vvte-gdgbce


https://wolfram.com/xid/0tz2vvte-y7rgx7


https://wolfram.com/xid/0tz2vvte-384eud

也可以使用 RegionCentroid 获得质心:

https://wolfram.com/xid/0tz2vvte-lewxzy

求在 -
平面上以原点为中心的单位线密度圆线绕
轴的惯性矩:

https://wolfram.com/xid/0tz2vvte-lcn4o0

https://wolfram.com/xid/0tz2vvte-cv7syx

答案也可以用 MomentOfInertia 计算得到:

https://wolfram.com/xid/0tz2vvte-elg2jg


https://wolfram.com/xid/0tz2vvte-j8b09t

https://wolfram.com/xid/0tz2vvte-ef6fot


https://wolfram.com/xid/0tz2vvte-pzoh1g

使用 ArcLength 可以获得相同的答案:

https://wolfram.com/xid/0tz2vvte-30jj0m


https://wolfram.com/xid/0tz2vvte-iqq81

https://wolfram.com/xid/0tz2vvte-mavmn6

结果可以使用 RegionMeasure 获得:

https://wolfram.com/xid/0tz2vvte-fxw0yk

巧妙范例 (2)奇妙或有趣的实例

https://wolfram.com/xid/0tz2vvte-cb24qp

https://wolfram.com/xid/0tz2vvte-6vn1jv


https://wolfram.com/xid/0tz2vvte-q71xfy


https://wolfram.com/xid/0tz2vvte-c339o0

https://wolfram.com/xid/0tz2vvte-i4m070

https://wolfram.com/xid/0tz2vvte-mr9o2


https://wolfram.com/xid/0tz2vvte-r1c8te

Wolfram Research (2023),LineIntegrate,Wolfram 语言函数,https://reference.wolfram.com/language/ref/LineIntegrate.html (更新于 2025 年).
文本
Wolfram Research (2023),LineIntegrate,Wolfram 语言函数,https://reference.wolfram.com/language/ref/LineIntegrate.html (更新于 2025 年).
Wolfram Research (2023),LineIntegrate,Wolfram 语言函数,https://reference.wolfram.com/language/ref/LineIntegrate.html (更新于 2025 年).
CMS
Wolfram 语言. 2023. "LineIntegrate." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2025. https://reference.wolfram.com/language/ref/LineIntegrate.html.
Wolfram 语言. 2023. "LineIntegrate." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2025. https://reference.wolfram.com/language/ref/LineIntegrate.html.
APA
Wolfram 语言. (2023). LineIntegrate. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/LineIntegrate.html 年
Wolfram 语言. (2023). LineIntegrate. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/LineIntegrate.html 年
BibTeX
@misc{reference.wolfram_2025_lineintegrate, author="Wolfram Research", title="{LineIntegrate}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/LineIntegrate.html}", note=[Accessed: 06-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_lineintegrate, organization={Wolfram Research}, title={LineIntegrate}, year={2025}, url={https://reference.wolfram.com/language/ref/LineIntegrate.html}, note=[Accessed: 06-April-2025
]}