WOLFRAM

RegionDisjoint[reg1,reg2]

returns True if the regions reg1 and reg2 are disjoint.

RegionDisjoint[reg1,reg2,reg3,]

returns True if the regions reg1, reg2, reg3, are pairwise disjoint.

Details and Options

  • The regions reg1 and reg2 are disjoint if there are no points that belong to both reg1 and reg2.
  • If all regi are parameter-free regions, i.e. ConstantRegionQ[regi] is True, the regions are point sets, and typically True or False is returned.
  • If some regi depend on parameters, i.e. ConstantRegionQ[regi] is False, then regi represents a family of regions, and RegionDisjoint will attempt to compute conditions on parameters such that the regions are disjoint.
  • The following options can be given:
  • Assumptions $Assumptionsassumptions to make about parameters
    GenerateConditions Falsewhether to generate conditions on parameters

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Test whether two regions are disjoint:

Out[3]=3

Visualize them:

Out[4]=4

Generate conditions for which regions are disjoint:

Out[2]=2

Scope  (17)Survey of the scope of standard use cases

Basic Uses  (5)

Show two regions are disjoint:

Out[3]=3

Visualize them:

Out[4]=4

Show two regions intersect:

Out[2]=2
Out[3]=3

Find conditions that make regions disjoint:

Out[2]=2

Show multiple regions are pairwise disjoint:

Out[2]=2
Out[3]=3

Show multiple regions are not pairwise disjoint:

Out[2]=2
Out[3]=3

Basic Regions  (4)

Regions in including Line and Interval:

Out[1]=1

Point:

Out[2]=2

Ball:

Out[3]=3

InfiniteLine:

Out[4]=4

Regions in including Point:

Out[2]=2
Out[3]=3

Line:

Out[5]=5
Out[6]=6

Polygon:

Out[8]=8
Out[9]=9

Disk and Ellipsoid:

Out[11]=11

Rectangle and RegularPolygon:

Out[12]=12

Regions in including Point:

Out[2]=2

Line:

Out[4]=4

Polygon:

Out[6]=6
Out[7]=7

Cuboid and Hexahedron:

Out[9]=9

Ball and Ellipsoid:

Out[11]=11

Tetrahedron and Simplex:

Out[13]=13

Regions in including Cuboid and Parallelepiped in :

Out[2]=2

Ellipsoid and Ball in :

Out[4]=4

Formula Regions  (4)

Implicit regions:

Out[3]=3

Parametric regions:

Out[2]=2

Compare two formula regions:

Out[2]=2

Nonconstant formula regions:

Out[1]=1

Mesh Regions  (3)

Compare MeshRegion in :

Out[3]=3

In :

Out[6]=6
Out[7]=7

In :

Out[10]=10
Out[11]=11

Compare BoundaryMeshRegion in :

Out[2]=2

In :

Out[4]=4
Out[5]=5

In :

Out[7]=7
Out[8]=8

Compare MeshRegion with BoundaryMeshRegion in :

Out[2]=2
Out[3]=3

In :

Out[5]=5
Out[6]=6

Derived Regions  (1)

Compare BooleanRegion:

Out[4]=4

Options  (2)Common values & functionality for each option

Assumptions  (1)

Find all radii where a concentric disk and annulus are disjoint:

Out[3]=3

Find only the positive radii:

Out[4]=4

GenerateConditions  (1)

Find when the unit disk is disjoint with an implicitly described annulus:

Out[3]=3

Show the conditions for which the result is valid:

Out[4]=4

Explicitly allow for degenerate cases:

Out[5]=5

Applications  (6)Sample problems that can be solved with this function

Estimate by simulating Buffon's needle problem:

Create randomly orientated line segments of length :

Select line segments that overlap the grid of lines:

Visualize overlapping line segments (red):

Out[6]=6

Estimation of :

Out[7]=7

Detect collisions between an object and a collection of walls:

Color walls that do not collide with the cow green, and red otherwise:

Out[4]=4

Find all countries that share a border with France:

The polygons of each country:

Select the countries whose polygons are not disjoint from France's polygon:

Out[3]=3

Verify the results:

Out[4]=4

View these countries on a map:

Out[5]=5

Find and visualize all positions where a unit rectangle is disjoint from an annulus:

Out[2]=2
Out[3]=3

Perform a random walk outside of a region:

Define a function to walk a point in a random direction, staying outside of a region:

Simulate a random walk from an initial point:

Visualize the walk:

Out[5]=5

Create a network that connects two US states if they share a border:

Two state's polygons share a border when RegionDisjoint returns False:

Out[4]=4

Style this network atop a map of the United States:

Out[6]=6

The largest disconnect is between Maine and the westernmost states:

Out[7]=7

Find and highlight a path from Maine to California:

Out[9]=9

Properties & Relations  (4)Properties of the function, and connections to other functions

A region and its complement are always disjoint:

Out[2]=2

Disjoint regions share no common point:

Out[2]=2
Out[3]=3

For nonempty regions, RegionEqual and RegionWithin return False when RegionDisjoint returns True:

Out[2]=2
Out[3]=3
Out[4]=4

Use FindInstance to find points that lie in the intersection of two regions:

Out[2]=2
Out[4]=4

Use RandomPoint to find a uniform sampling of points that lie in the intersection of two regions:

Out[6]=6

Use Reduce to find where two regions overlap:

Out[7]=7
Out[8]=8

Neat Examples  (1)Surprising or curious use cases

Create a scene of randomly placed, disjoint balls:

In 2D:

Out[5]=5

In 3D:

Out[7]=7
Wolfram Research (2017), RegionDisjoint, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionDisjoint.html.
Wolfram Research (2017), RegionDisjoint, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionDisjoint.html.

Text

Wolfram Research (2017), RegionDisjoint, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionDisjoint.html.

Wolfram Research (2017), RegionDisjoint, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionDisjoint.html.

CMS

Wolfram Language. 2017. "RegionDisjoint." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RegionDisjoint.html.

Wolfram Language. 2017. "RegionDisjoint." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RegionDisjoint.html.

APA

Wolfram Language. (2017). RegionDisjoint. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RegionDisjoint.html

Wolfram Language. (2017). RegionDisjoint. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RegionDisjoint.html

BibTeX

@misc{reference.wolfram_2025_regiondisjoint, author="Wolfram Research", title="{RegionDisjoint}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/RegionDisjoint.html}", note=[Accessed: 04-April-2025 ]}

@misc{reference.wolfram_2025_regiondisjoint, author="Wolfram Research", title="{RegionDisjoint}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/RegionDisjoint.html}", note=[Accessed: 04-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_regiondisjoint, organization={Wolfram Research}, title={RegionDisjoint}, year={2017}, url={https://reference.wolfram.com/language/ref/RegionDisjoint.html}, note=[Accessed: 04-April-2025 ]}

@online{reference.wolfram_2025_regiondisjoint, organization={Wolfram Research}, title={RegionDisjoint}, year={2017}, url={https://reference.wolfram.com/language/ref/RegionDisjoint.html}, note=[Accessed: 04-April-2025 ]}