ListVectorDisplacementPlot

ListVectorDisplacementPlot[{{{vx11,vy11},,{vx1n,vy1n}},,{{vxm1,vym1},,{vxmn,vymn}}}]

generates a displacement plot from an array of vector displacements {vxij,vyij}.

ListVectorDisplacementPlot[{{{x1,y1},{vx1,vy1}},,{{x1,y1},{vx1,vy1}}}]

generates a displacement plot from displacements {vxi,vyi} at point {xi,yi}.

ListVectorDisplacementPlot[{{ {{vx11,vy11},s11},,{{vx1n,vy1n},s1n}},,{ {{vxmi,vym1},sm1},,{{vxmn,vymn},smn}}}]

uses the scalar values sij to color the displaced region.

ListVectorDisplacementPlot[{ {{vx1,vy1},s1},,{{vxn,vyn},sn}}]

uses the scalar values si at point {xi,yi} to color the displaced region.

ListVectorDisplacementPlot[,reg]

plots the displacement over the region reg.

Details and Options

Examples

open allclose all

Basic Examples  (4)

Plot a displacement field colored by its norm interpolated from a specified set of vectors:

Plot the vector field from data specifying coordinates and vectors. The reference region is the convex hull of the coordinates:

Specify a scalar field to color the deformed region:

Specify the reference region:

Scope  (15)

Sampling  (8)

Visualize a scaled displacement field by comparing a reference and a deformed region:

Specify the coordinates and the vector field:

Specify the coordinates, the vector field and a scalar field:

Generate random points in a vector field:

By default, the reference region is the convex hull of the coordinates:

Vectors are drawn from points in the reference region to corresponding points in the (scaled) deformed region:

Restrict vectors to points on the boundary:

Specify other vectors:

Displacements can be drawn to scale:

Specify the region:

Specify the region with a RegionFunction:

The domain may be a curve:

The domain may be an ImplicitRegion:

The domain may be a ParametricRegion:

The domain may be a MeshRegion:

The domain may be a BoundaryMeshRegion:

Presentation  (7)

Specify the ColorFunction for the deformed region:

Specify the VectorColorFunction independently of the ColorFunction:

Use a single color for the arrows:

Include a legend for the norms of the displacements:

Include a legend for the optional scalar field:

Include a Mesh:

Draw displacements to scale:

Options  (45)

AspectRatio  (2)

By default, the aspect ratio is Automatic:

Set the aspect ratio:

BoundaryStyle  (3)

By default, the boundary style matches the interior colors in the deformed region:

Specify the BoundaryStyle:

BoundaryStyle applies to regions cut by RegionFunction:

ColorFunction  (4)

By default, the deformed region is colored by the norm of the field:

Specify a scalar field for the colors:

Use a named color gradient:

Specify a custom ColorFunction:

ColorFunctionScaling  (2)

Use the natural range of norm values:

Control the scaling of the individual arguments of the ColorFunction:

DataRange  (1)

By default, the reference region is taken to be the index range of the data array:

Specify the data range for the reference region:

Mesh  (3)

Specify a Mesh to visualize the displacements:

Show the initial and final sampling mesh:

Specify 10 mesh lines in the direction and 5 in the direction:

Use mesh lines at specific values:

Highlight specific mesh lines:

Mesh lines are suppressed in the reference region if the boundary and filling of the reference region are removed:

MeshFunctions  (1)

By default, the mesh lines are in the and directions:

Use circular and radial mesh lines:

MeshStyle  (1)

Style the mesh lines:

Style the mesh lines differently in different directions:

PlotLegends  (3)

Include a legend to show the color range of vector norms:

Include a legend for the optional scalar field:

Control the placement of the legend:

PlotPoints  (1)

Use more points to get smoother regions:

PlotRange  (3)

The full PlotRange is used by default:

Specify an explicit limit that is shared by the and directions:

Specify different plot ranges in the and directions:

PlotStyle  (4)

Remove the filling for the deformed region:

Apply a Texture to the deformed region:

Use PatternFilling to style the deformed region:

ColorFunction has precedence over PlotStyle:

PlotTheme  (1)

Use a named theme:

RegionBoundaryStyle  (2)

Specify the boundary color of the reference region:

Remove the boundary of the reference region:

RegionFillingStyle  (2)

Specify the filling of the reference region:

Remove the filling for the reference region:

RegionFunction  (1)

Use a RegionFunction to specify the reference region:

VectorAspectRatio  (2)

The default aspect ratio for a vector marker is 1/4:

Specify the relative width of a vector marker:

VectorColorFunction  (1)

By default, if VectorColorFunction is Automatic, then the VectorColorFunction matches the ColorFunction:

Specify a VectorColorFunction that is different from the ColorFunction:

Use no VectorColorFunction:

VectorColorFunctionScaling  (1)

Use the natural range of norm values for vector colors:

VectorMarkers  (1)

By default, vectors are drawn from points in the reference region to corresponding points in the deformed region:

Center the markers at the sampled points:

Use a named appearance to draw the vectors:

VectorPoints  (2)

No vectors are shown by default:

Show vectors sampled from the entire original region:

Sample vectors from the boundary of the region:

Use symbolic names to specify the density of vectors:

Use symbolic names to specify the arrangement of vectors:

Specify the number of vectors in the and directions:

Specify a different number of vectors in the and directions:

Give specific locations for vectors:

Along a curve, vectors are equally spaced by default:

VectorRange  (1)

Specify the range of vector norms:

Style the clipped vectors:

VectorScaling  (1)

By default, vectors extend from points in the reference region to corresponding points in the deformed region:

Set all vectors to have the same size:

VectorSizes  (1)

By default, vectors extend from points in the reference region to corresponding points in the deformed region:

Specify the range of arrow lengths:

Suppress scaling of the displacement vectors so that a rotation of 45° looks appropriate:

Suppress scaling of the displacement vectors even if no vectors are displayed:

VectorStyle  (1)

VectorColorFunction has precedence over VectorStyle:

Applications  (17)

Basic Applications  (16)

A constant displacement field moves each point in the reference region by the same amount:

Note that the displacements are automatically scaled so that very small and very large displacements are both visible:

Use VectorSizesFull to display the actual sizes of displacements:

Color is used to indicate the magnitude of the displacements:

Color the region by a different scalar function:

Use arrows to indicate initial and final locations for a sample points:

Visualize a dilation in the direction:

Visualize a contraction in the direction:

Visualize a dilation in the direction and a contraction in the direction:

Visualize a shear in the direction:

Visualize a shear in the direction:

Visualize a combined shear in the and directions:

Visualize a rotation about the origin:

Combine a rotation, a shear and a dilation:

Visualize a rotation for points near the origin:

Visualize a shear for points near the origin:

Solid Mechanics  (1)

The left edge of the displayed region is fixed (no displacement) and a uniform horizontal load of 10 kPa is applied the right edge:

Obtain data from a numerical solver of the form {location vector, {displacement vector, Frobenius norm of stress tensor}} assuming that the region is linearly elastic and in plane stress:

Use a RegionFunction to properly visualize the deformed region. Note the stresses near the unloaded corners are much higher than the applied load of 10 kPa:

Properties & Relations  (12)

Use ListVectorDisplacementPlot3D to visualize deformations in 3D:

Use VectorDisplacementPlot to visualize functions:

Use VectorDisplacementPlot3D to visualize functions in 3D:

Use ListVectorPlot for plotting data:

Use ListStreamPlot to plot streamlines instead of vectors:

Use StreamPlot to plot with streamlines instead of vectors:

Use VectorDensityPlot to add a density plot of the scalar field:

Use ListVectorDensityPlot or ListStreamDensityPlot to add a density plot of a scalar field:

Use LineIntegralConvolutionPlot to plot the line integral convolution of a vector field:

Use ListVectorPlot3D or ListStreamPlot3D to visualize vector fields in 3D:

Use VectorPlot3D and StreamPlot3D to visualize 3D vector fields:

Plot vectors on surfaces with SliceVectorPlot3D:

Plot complex functions as a vector field:

Use ComplexStreamPlot to plot streamlines instead of vectors:

Use GeoVectorPlot to plot vectors on a map:

Use GeoStreamPlot to plot streamlines instead of vectors:

Wolfram Research (2021), ListVectorDisplacementPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html.

Text

Wolfram Research (2021), ListVectorDisplacementPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html.

CMS

Wolfram Language. 2021. "ListVectorDisplacementPlot." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html.

APA

Wolfram Language. (2021). ListVectorDisplacementPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html

BibTeX

@misc{reference.wolfram_2023_listvectordisplacementplot, author="Wolfram Research", title="{ListVectorDisplacementPlot}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html}", note=[Accessed: 29-March-2024 ]}

BibLaTeX

@online{reference.wolfram_2023_listvectordisplacementplot, organization={Wolfram Research}, title={ListVectorDisplacementPlot}, year={2021}, url={https://reference.wolfram.com/language/ref/ListVectorDisplacementPlot.html}, note=[Accessed: 29-March-2024 ]}