WOLFRAM

NicholsPlot[lsys]

generates a Nichols plot of the transfer function for the system lsys.

NicholsPlot[lsys,{ωmin,ωmax}]

plots for the frequency range ωmin to ωmax.

NicholsPlot[expr,{ω,ωmin,ωmax}]

plots expr using the variable ω.

Details and Options

Examples

open allclose all

Basic Examples  (4)Summary of the most common use cases

Nichols plot of a transfer-function model:

Out[1]=1

Specify the frequency range:

Out[1]=1

Nichols plot of a discrete-time system:

Out[1]=1

Use legends for multiple systems:

Out[1]=1

Scope  (8)Survey of the scope of standard use cases

The Nichols plot of a continuous-time system:

Out[1]=1

The Nichols plot of a discrete-time system:

Out[1]=1

The system can also be specified as an expression:

Out[1]=1

A discrete-time system with sampling period 1, specified as an expression:

Out[1]=1

A system with a time delay:

Out[1]=1

Specify the frequency range:

Out[1]=1

The Nichols plot of a state-space model:

Out[1]=1

A system specified as a sinusoidal transfer function:

Out[1]=1

Generalizations & Extensions  (1)Generalized and extended use cases

NicholsPlot[TransferFunctionModel[g,var]] is equivalent to NicholsPlot[g]:

Out[2]=2

Options  (28)Common values & functionality for each option

AspectRatio  (1)

Specify the aspect ratio:

Out[1]=1

ColorFunction  (3)

Color the curve by scaled frequency values:

Out[1]=1

Use a named color gradient:

Out[1]=1

Use red when the sensitivity function is less than 1, and black otherwise:

Out[1]=1

ColorFunctionScaling  (1)

Scale the frequency to be between 0 and 1:

Out[1]=1

ColorFunctionScaling->False uses absolute values:

Out[2]=2

Specify the scaling manually:

Out[3]=3

CoordinatesToolOptions  (1)

Display the tooltip coordinates in radians and absolute magnitude:

Out[1]=1

Exclusions  (1)

By default the singular frequencies are excluded:

Out[1]=1

Mesh  (4)

Show equally spaced frequency locations:

Out[1]=1

Show the coordinates at 1 radian per time unit:

Out[1]=1

Show the coordinates at several frequencies:

Out[1]=1

Specify the graphics directives:

Out[1]=1

MeshFunctions  (1)

By default the mesh is located at evenly spaced frequencies:

Out[1]=1

Specify a mesh with evenly spaced log-10 frequency values:

Out[2]=2

MeshStyle  (1)

Specify the mesh style:

Out[1]=1

NicholsGridLines  (2)

Use automatically chosen values of closed-loop magnitude and phase:

Out[1]=1

Draw specific contours:

Out[1]=1

PhaseRange  (1)

The phase is typically plotted as a continuous function:

Out[1]=1

Specify a phase range:

Out[2]=2

PlotLegends  (4)

Use automatic legends for multiple systems:

Out[1]=1

Use named legends:

Out[1]=1

Use LineLegend to add the label for overall legend:

Out[1]=1

Place the legend above the plot:

Out[1]=1

PlotPoints  (1)

Use more initial points to get a smoother curve:

Out[1]=1

PlotTheme  (2)

Use a theme with a frame and grid lines:

Out[1]=1

Change the style of the grid lines:

Out[1]=1

ScalingFunctions  (1)

Show the phase in radians:

Out[1]=1

Show absolute values of magnitude:

Out[2]=2

StabilityMargins  (3)

Show stability margins:

Out[1]=1

Show only the gain margin:

Out[1]=1

Only margins and crossover frequencies with numerical values are shown:

Out[2]=2
Out[3]=3

StabilityMarginsStyle  (1)

Specify stability margins style:

Out[1]=1
Wolfram Research (2010), NicholsPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/NicholsPlot.html (updated 2014).
Wolfram Research (2010), NicholsPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/NicholsPlot.html (updated 2014).

Text

Wolfram Research (2010), NicholsPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/NicholsPlot.html (updated 2014).

Wolfram Research (2010), NicholsPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/NicholsPlot.html (updated 2014).

CMS

Wolfram Language. 2010. "NicholsPlot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2014. https://reference.wolfram.com/language/ref/NicholsPlot.html.

Wolfram Language. 2010. "NicholsPlot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2014. https://reference.wolfram.com/language/ref/NicholsPlot.html.

APA

Wolfram Language. (2010). NicholsPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NicholsPlot.html

Wolfram Language. (2010). NicholsPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NicholsPlot.html

BibTeX

@misc{reference.wolfram_2025_nicholsplot, author="Wolfram Research", title="{NicholsPlot}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/NicholsPlot.html}", note=[Accessed: 24-April-2025 ]}

@misc{reference.wolfram_2025_nicholsplot, author="Wolfram Research", title="{NicholsPlot}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/NicholsPlot.html}", note=[Accessed: 24-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_nicholsplot, organization={Wolfram Research}, title={NicholsPlot}, year={2014}, url={https://reference.wolfram.com/language/ref/NicholsPlot.html}, note=[Accessed: 24-April-2025 ]}

@online{reference.wolfram_2025_nicholsplot, organization={Wolfram Research}, title={NicholsPlot}, year={2014}, url={https://reference.wolfram.com/language/ref/NicholsPlot.html}, note=[Accessed: 24-April-2025 ]}