EdgeTaggedGraph
EdgeTaggedGraph[{e1,e2,…}]
yields a graph with edges ej tagged with unique tags.
EdgeTaggedGraph[{e1,e2,…}{t1,t2,…}]
yields a graph with edges ej tagged with tj.
EdgeTaggedGraph[{v1,v2,…},{e1,e2,…}{t1,t2,…}]
yields a graph with vertices vi and edges ej tagged with tj.
EdgeTaggedGraph[{…,wi[vi],…},{…,wj[ej],…}{t1,t2,…}]
yields a graph with vertex and edge annotations defined by the symbolic wrappers wk.
Details and Options

- EdgeTaggedGraph generates a Graph object.
- EdgeTaggedGraph is typically used to construct a graph with automatically generated edge tags and distinguishable parallel edges.
- EdgeTaggedGraph[{e1,e2,…}] returns a graph with all edges tagged and parallel edges having unique tags. New tags for parallel edges ej are integers starting at 1. Existing non-duplicate tags on edges ej are preserved.
- EdgeTaggedGraph supports the same vertices, edges, wrappers and options as Graph.

Examples
open allclose allScope (27)
Connectivity (8)
Create an undirected graph using characters. Enter the character as ue
:
Create a directed graph using characters. Enter the character as de
:
Create a directed graph from a list of rules:
Create an undirected graph from a list of rules:
Specify a graph with isolated vertices by giving an explicit list of vertices:
Use VertexList and EdgeList to get vertices and edges:
The ordering for edges is the order in which they were entered:
The ordering for vertices is the order in which they were entered in the edges:
Use an explicit vertex list to control the ordering used by VertexList:
The input vertex list controls the resulting vertex order:
Wrappers (5)
Use wrappers on vertices or edges:
Add interactive behavior by wrappers such as Tooltip:
Any object can be used in the tooltip:
Use Button to trigger actions when clicking an edge or vertex:
Use PopupWindow to provide information drilldown:
Styling (8)
Set the style for all vertices or edges:
Style individual vertices or edges using options:
Use wrappers for individual styling:
Adjust the size of vertices using symbolic sizes:
Or use sizes in terms of the smallest distance between vertex centers:
Use built-in collections for VertexShapeFunction:
Combine with a default vertex function:
Use any Graphics, Image or Graphics3D as a vertex shape:
Use built-in collections for EdgeShapeFunction:
Directed edges including solid arrows:
Labeling (6)
Use any expression as a label:
Control the placement of vertex labels using Placed, including symbolic inside positions:
Place multiple labels using Placed in a wrapper:
Any number of labels can be used:
Place multiple labels using VertexLabels:
Use Placed with symbolic locations to control label placement along an edge:
Use explicit coordinates to place labels:
Place multiple labels using Placed in a wrapper:
Any number of labels can be used:
Place multiple labels using EdgeLabels:
Options (86)
DirectedEdges (2)
By default, a directed graph is generated when giving a list of rules:
Use DirectedEdges->False to interpret rules as undirected edges:
Use DirectedEdge or UndirectedEdge to directly specify whether a graph is directed or not:
EdgeLabels (7)
Use any expression as a label:
Use Placed with symbolic locations to control label placement along an edge:
Use explicit coordinates to place labels:
Vary positions within the label:
Place multiple labels using Placed in a wrapper:
Any number of labels can be used:
Place multiple labels using EdgeLabels:
Use automatic labeling by values through Tooltip and StatusArea:
EdgeShapeFunction (6)
Get a list of built-in settings for EdgeShapeFunction:
Undirected edges including the basic line:
Lines with different glyphs on the edges:
Directed edges including solid arrows:
Specify an edge function for an individual edge:
Combine with a different default edge function:
Draw edges by running a program:
EdgeShapeFunction can be combined with EdgeStyle:
EdgeShapeFunction has higher priority than EdgeStyle:
EdgeStyle (4)
EdgeStyle can be combined with EdgeShapeFunction:
EdgeShapeFunction has higher priority than EdgeStyle:
GraphHighlightStyle (2)
Get a list of built-in settings for GraphHighlightStyle:
Use built-in settings for GraphHighlightStyle:
GraphLayout (5)
By default, the layout is chosen automatically:
Specify layouts on special curves:
Specify layouts that satisfy optimality criteria:
VertexCoordinates overrides GraphLayout coordinates:
Use AbsoluteOptions to extract VertexCoordinates computed using a layout algorithm:
PlotTheme (4)
VertexCoordinates (3)
By default, any vertex coordinates are computed automatically:
Extract the resulting vertex coordinates using AbsoluteOptions:
Specify a layout function along an ellipse:
Use it to generate vertex coordinates for a graph:
VertexCoordinates has higher priority than GraphLayout:
VertexLabels (13)
Use any expression as a label:
Use Placed with symbolic locations to control label placement, including outside positions:
Symbolic outside corner positions:
Symbolic inside corner positions:
Use explicit coordinates to place the center of labels:
Place all labels at the upper-right corner of the vertex and vary the coordinates within the label:
Place multiple labels using Placed in a wrapper:
Any number of labels can be used:
Place multiple labels using VertexLabels:
Use the argument to Placed to control formatting including Tooltip:
Or StatusArea:
VertexShape (5)
Use any Graphics, Image or Graphics3D as a vertex shape:
Specify vertex shapes for individual vertices:
VertexShape can be combined with VertexSize:
VertexShape is not affected by VertexStyle:
VertexShapeFunction has higher priority than VertexShape:
VertexShapeFunction (11)
Get a list of built-in collections for VertexShapeFunction:
Use built-in settings for VertexShapeFunction in the "Basic" collection:
Use built-in settings for VertexShapeFunction in the "Rounded" collection:
Use built-in settings for VertexShapeFunction in the "Concave" collection:
Combine with a default vertex function:
Draw vertices using a predefined graphic:
Draw vertices by running a program:
VertexShapeFunction can be combined with VertexStyle:
VertexShapeFunction has higher priority than VertexStyle:
VertexShapeFunction can be combined with VertexSize:
VertexShapeFunction has higher priority than VertexShape:
VertexSize (8)
By default, the size of vertices is computed automatically:
Specify the size of all vertices using symbolic vertex size:
Use a fraction of the minimum distance between vertex coordinates:
Use a fraction of the overall diagonal for all vertex coordinates:
Specify size in both the and
directions:
Specify the size for individual vertices:
VertexSize can be combined with VertexShapeFunction:
VertexSize can be combined with VertexShape:
VertexStyle (5)
VertexShapeFunction can be combined with VertexStyle:
VertexShapeFunction has higher priority than VertexStyle:
VertexStyle can be combined with BaseStyle:
VertexStyle has higher priority than BaseStyle:
VertexShape is not affected by VertexStyle:
Applications (4)
Properties & Relations (7)
Use VertexCount and EdgeCount to count vertices and edges:
Use VertexList and EdgeList to enumerate vertices and edges in standard order:
Edges and vertices are given in the order they are input:
Compute the AdjacencyMatrix from a graph:
Test whether a graph is a tagged graph:
Get the list of edge tags using EdgeTags:
IndexEdgeTaggedGraph can be used to get a tagged graph:
Use DirectedEdge or UndirectedEdge to directly specify whether a edge is directed or not:
Possible Issues (1)
Parallel edges are indistinguishable in Graph:
Use EdgeTaggedGraph to assign a unique tag to each edge:
Text
Wolfram Research (2020), EdgeTaggedGraph, Wolfram Language function, https://reference.wolfram.com/language/ref/EdgeTaggedGraph.html.
CMS
Wolfram Language. 2020. "EdgeTaggedGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/EdgeTaggedGraph.html.
APA
Wolfram Language. (2020). EdgeTaggedGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EdgeTaggedGraph.html