WOLFRAM

KnightTourGraph
KnightTourGraph

gives a Knight's tour graph on an mn chessboard.

Details and Options

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

The first few knight's tour graphs on differently sized chessboards:

Out[1]=1

Options  (80)Common values & functionality for each option

AnnotationRules  (3)

Specify an annotation for vertices:

Out[1]=1

Edges:

Out[1]=1

Graph itself:

Out[1]=1
Out[2]=2

EdgeLabels  (7)

Label the edge 16:

Out[1]=1

Label all edges individually:

Out[1]=1
Out[2]=2

Use any expression as a label:

Out[1]=1

Use Placed with symbolic locations to control label placement along an edge:

Out[1]=1

Use explicit coordinates to place labels:

Out[1]=1

Vary positions within the label:

Out[2]=2

Place multiple labels:

Out[1]=1
Out[2]=2

Use automatic labeling by values through Tooltip and StatusArea:

Out[1]=1
Out[2]=2

EdgeShapeFunction  (6)

Get a list of built-in settings for EdgeShapeFunction:

Out[1]=1

Undirected edges including the basic line:

Out[1]=1

Lines with different glyphs on the edges:

Out[2]=2

Directed edges including solid arrows:

Out[1]=1

Line arrows:

Out[2]=2

Open arrows:

Out[3]=3

Specify an edge function for an individual edge:

Out[1]=1

Combine with a different default edge function:

Out[2]=2

Draw edges by running a program:

Out[2]=2

EdgeShapeFunction can be combined with EdgeStyle:

Out[1]=1

EdgeShapeFunction has higher priority than EdgeStyle:

Out[2]=2

EdgeStyle  (2)

Style all edges:

Out[1]=1

Style individual edges:

Out[1]=1

EdgeWeight  (2)

Specify the weight for all edges:

Out[1]=1

Use any numeric expression as a weight:

Out[1]=1

GraphHighlight  (3)

Highlight the vertex 1:

Out[1]=1

Highlight the edge 16:

Out[1]=1

Highlight vertices and edges:

Out[1]=1

GraphHighlightStyle  (2)

Get a list of built-in settings for GraphHighlightStyle:

Out[1]=1

Use built-in settings for GraphHighlightStyle:

Out[1]=1

GraphLayout  (5)

By default, a custom layout is chosen for KnightTourGraph:

Out[1]=1

Specify layouts on special curves:

Out[1]=1

Specify layouts that satisfy optimality criteria:

Out[1]=1

VertexCoordinates overrides GraphLayout coordinates:

Out[1]=1

Use AbsoluteOptions to extract VertexCoordinates computed using a layout algorithm:

Out[1]=1
Out[2]=2

PlotTheme  (4)

Base Themes  (2)

Use a common base theme:

Out[1]=1

Use a monochrome theme:

Out[1]=1

Feature Themes  (2)

Use a large graph theme:

Out[1]=1

Use a classic diagram theme:

Out[1]=1

VertexCoordinates  (3)

By default, any vertex coordinates are computed automatically:

Out[1]=1

Extract the resulting vertex coordinates using AbsoluteOptions:

Out[2]=2

Specify a layout function along an ellipse:

Out[2]=2

Use it to generate vertex coordinates for a graph:

Out[3]=3

VertexCoordinates has higher priority than GraphLayout:

Out[1]=1

VertexLabels  (13)

Use vertex names as labels:

Out[1]=1

Label individual vertices:

Out[1]=1

Label all vertices:

Out[1]=1

Use any expression as a label:

Out[1]=1

Use Placed with symbolic locations to control label placement, including outside positions:

Out[1]=1

Symbolic outside corner positions:

Out[2]=2

Symbolic inside positions:

Out[1]=1

Symbolic inside corner positions:

Out[2]=2

Use explicit coordinates to place the center of labels:

Out[1]=1

Place all labels at the upper-right corner of the vertex and vary the coordinates within the label:

Out[1]=1

Place multiple labels:

Out[1]=1

Any number of labels can be used:

Out[2]=2

Use the argument to Placed to control formatting including Tooltip:

Out[1]=1

Or StatusArea:

Out[2]=2

Use more elaborate formatting functions:

Out[2]=2
Out[4]=4
Out[6]=6

VertexShape  (5)

Use any Graphics, Image, or Graphics3D as a vertex shape:

Out[1]=1

Specify vertex shapes for individual vertices:

Out[1]=1

VertexShape can be combined with VertexSize:

Out[1]=1

VertexShape is not affected by VertexStyle:

Out[1]=1

VertexShapeFunction has higher priority than VertexShape:

Out[1]=1

VertexShapeFunction  (10)

Get a list of built-in collections for VertexShapeFunction:

Out[1]=1

Use built-in settings for VertexShapeFunction in the "Basic" collection:

Out[1]=1

Simple basic shapes:

Out[2]=2

Common basic shapes:

Out[3]=3

Use built-in settings for VertexShapeFunction in the "Rounded" collection:

Out[1]=1
Out[2]=2

Use built-in settings for VertexShapeFunction in the "Concave" collection:

Out[1]=1
Out[2]=2

Draw individual vertices:

Out[1]=1

Combine with a default vertex function:

Out[2]=2

Draw vertices using a predefined graphic:

Out[1]=1

Draw vertices by running a program:

Out[2]=2

VertexShapeFunction can be combined with VertexStyle:

Out[2]=2

VertexShapeFunction has higher priority than VertexStyle:

Out[4]=4

VertexShapeFunction can be combined with VertexSize:

Out[1]=1

VertexShapeFunction has higher priority than VertexShape:

Out[1]=1

VertexSize  (8)

By default, the size of vertices is computed automatically:

Out[1]=1

Specify the size of all vertices using symbolic vertex size:

Out[1]=1

Use a fraction of the minimum distance between vertex coordinates:

Out[1]=1

Use a fraction of the overall diagonal for all vertex coordinates:

Out[1]=1

Specify size in both the and directions:

Out[1]=1

Specify the size for individual vertices:

Out[1]=1

VertexSize can be combined with VertexShapeFunction:

Out[1]=1

VertexSize can be combined with VertexShape:

Out[1]=1

VertexStyle  (5)

Style all vertices:

Out[1]=1

Style individual vertices:

Out[1]=1

VertexShapeFunction can be combined with VertexStyle:

Out[2]=2

VertexShapeFunction has higher priority than VertexStyle:

Out[4]=4

VertexStyle can be combined with BaseStyle:

Out[1]=1

VertexStyle has higher priority than BaseStyle:

Out[2]=2

VertexShape is not affected by VertexStyle:

Out[1]=1

VertexWeight  (2)

Set the weight for all vertices:

Out[1]=1
Out[2]=2

Use any numeric expression as a weight:

Out[1]=1
Out[2]=2

Applications  (6)Sample problems that can be solved with this function

The GraphCenter of knight's tour graphs:

Out[1]=1

GraphPeriphery:

Out[1]=1

VertexEccentricity:

Out[1]=1

Highlight the vertex eccentricity path:

Out[3]=3

GraphRadius:

Out[1]=1

Highlight the radius path:

Out[3]=3

GraphDiameter:

Out[1]=1

Highlight the diameter path:

Out[3]=3

Highlight the vertex degree for KnightTourGraph:

Out[3]=3

Highlight the closeness centrality:

Out[4]=4

Highlight the eigenvector centrality:

Out[5]=5

Properties & Relations  (3)Properties of the function, and connections to other functions

KnightTourGraph[m,n] has m n vertices:

Out[1]=1

KnightTourGraph[m,n] has edges:

Out[1]=1

KnightTourGraph[n,n] is Hamiltonian for even :

Out[1]=1

Possible Issues  (1)Common pitfalls and unexpected behavior

The setting DirectedEdges->True does not apply to KnightTourGraph:

Out[1]=1

Neat Examples  (2)Surprising or curious use cases

Out[1]=1
Out[1]=1
Wolfram Research (2010), KnightTourGraph, Wolfram Language function, https://reference.wolfram.com/language/ref/KnightTourGraph.html.
Wolfram Research (2010), KnightTourGraph, Wolfram Language function, https://reference.wolfram.com/language/ref/KnightTourGraph.html.

Text

Wolfram Research (2010), KnightTourGraph, Wolfram Language function, https://reference.wolfram.com/language/ref/KnightTourGraph.html.

Wolfram Research (2010), KnightTourGraph, Wolfram Language function, https://reference.wolfram.com/language/ref/KnightTourGraph.html.

CMS

Wolfram Language. 2010. "KnightTourGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/KnightTourGraph.html.

Wolfram Language. 2010. "KnightTourGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/KnightTourGraph.html.

APA

Wolfram Language. (2010). KnightTourGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/KnightTourGraph.html

Wolfram Language. (2010). KnightTourGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/KnightTourGraph.html

BibTeX

@misc{reference.wolfram_2025_knighttourgraph, author="Wolfram Research", title="{KnightTourGraph}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/KnightTourGraph.html}", note=[Accessed: 16-April-2025 ]}

@misc{reference.wolfram_2025_knighttourgraph, author="Wolfram Research", title="{KnightTourGraph}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/KnightTourGraph.html}", note=[Accessed: 16-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_knighttourgraph, organization={Wolfram Research}, title={KnightTourGraph}, year={2010}, url={https://reference.wolfram.com/language/ref/KnightTourGraph.html}, note=[Accessed: 16-April-2025 ]}

@online{reference.wolfram_2025_knighttourgraph, organization={Wolfram Research}, title={KnightTourGraph}, year={2010}, url={https://reference.wolfram.com/language/ref/KnightTourGraph.html}, note=[Accessed: 16-April-2025 ]}