InverseFourierCosTransform
InverseFourierCosTransform[expr,ω,t]
gives the symbolic inverse Fourier cosine transform of expr.
InverseFourierCosTransform[expr,{ω1,ω2,…},{t1,t2,…}]
gives the multidimensional inverse Fourier cosine transform of expr.
Details and Options
- The inverse Fourier cosine transform of a function is by default defined as .
- The multidimensional inverse Fourier cosine transform of a function is by default defined as .
- Other definitions are used in some scientific and technical fields.
- Different choices of definitions can be specified using the option FourierParameters.
- With the setting FourierParameters->{a,b} the inverse Fourier transform computed by InverseFourierCosTransform is .
- Assumptions and other options to Integrate can also be given in InverseFourierCosTransform.
Examples
open allclose allScope (5)
Options (3)
FourierParameters (1)
The default setting for FourierParameters is {0,1}:
Use a non-default setting for a different definition of transform:
GenerateConditions (1)
Use GenerateConditions->True to get parameter conditions for when a result is valid:
Properties & Relations (3)
Use Asymptotic to compute an asymptotic approximation:
FourierCosTransform and InverseFourierCosTransform are mutual inverses:
For even functions results are identical to InverseFourierTransform:
Possible Issues (1)
Inverse Fourier cosine transforms may require generalized functions such as DiracDelta:
Text
Wolfram Research (1999), InverseFourierCosTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html.
CMS
Wolfram Language. 1999. "InverseFourierCosTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html.
APA
Wolfram Language. (1999). InverseFourierCosTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseFourierCosTransform.html