InverseFourierTransform
InverseFourierTransform[expr,ω,t]
gives the symbolic inverse Fourier transform of expr.
InverseFourierTransform[expr,{ω1,ω2,…},{t1,t2,…}]
gives the multidimensional inverse Fourier transform of expr.
Details and Options
- The inverse Fourier transform of a function is by default defined as .
- The multidimensional inverse Fourier transform of a function is by default defined to be .
- Other definitions are used in some scientific and technical fields.
- Different choices of definitions can be specified using the option FourierParameters.
- With the setting FourierParameters->{a,b} the inverse Fourier transform computed by InverseFourierTransform is .
- Some common choices for {a,b} are {0,1} (default; modern physics), {1,-1} (pure mathematics; systems engineering), {-1,1} (classical physics), and {0,-2Pi} (signal processing).
- The following options can be given: »
-
Assumptions $Assumptions assumptions to make about parameters FourierParameters {0,1} parameters to define the Fourier transform GenerateConditions False whether to generate answers that involve conditions on parameters - InverseFourierTransform[expr,ω,t] yields an expression depending on the continuous variable t that represents the symbolic inverse Fourier transform of expr with respect to the continuous variable ω. InverseFourier[list] takes a finite list of numbers as input, and yields as output a list representing the discrete inverse Fourier transform of the input.
- In TraditionalForm, InverseFourierTransform is output using .
Examples
open allclose allScope (6)
Piecewise functions and distributions:
TraditionalForm formatting:
Options (3)
Assumptions (1)
The inverse Fourier transform of BesselJ is a piecewise function:
FourierParameters (1)
GenerateConditions (1)
Use GenerateConditions->True to get parameter conditions for when a result is valid:
Applications (2)
The inverse Fourier transform of a radially symmetric function in the plane can be expressed as an inverse Hankel transform. Verify this relation for the function defined by:
Compute its inverse Fourier transform:
Obtain the same result using InverseHankelTransform:
Plot the inverse Fourier transform:
Generate a gallery of inverse Fourier transforms for a list of radially symmetric functions:
Compute the inverse Hankel transforms for these functions:
Generate the gallery of inverse Fourier transforms as required:
Properties & Relations (4)
Use Asymptotic to compute an asymptotic approximation:
InverseFourierTransform and FourierTransform are mutual inverses:
InverseFourierTransform and InverseFourierCosTransform are equal for even functions:
InverseFourierTransform and InverseFourierSinTransform differ by for odd functions:
Possible Issues (1)
Neat Examples (1)
The InverseFourierTransform of is a convolution of box functions:
Text
Wolfram Research (1999), InverseFourierTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseFourierTransform.html.
CMS
Wolfram Language. 1999. "InverseFourierTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseFourierTransform.html.
APA
Wolfram Language. (1999). InverseFourierTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseFourierTransform.html