FourierSinTransform
FourierSinTransform[expr,t,ω]
gives the symbolic Fourier sine transform of expr.
FourierSinTransform[expr,{t1,t2,…},{ω1,ω2,…}]
gives the multidimensional Fourier sine transform of expr.
Details and Options
- The Fourier sine transform of a function is by default defined to be .
- The multidimensional Fourier sine transform of a function is by default defined to be .
- Other definitions are used in some scientific and technical fields.
- Different choices of definitions can be specified using the option FourierParameters.
- With the setting the Fourier sine transform computed by FourierSinTransform is .
- Assumptions and other options to Integrate can also be given in FourierSinTransform.
Examples
open allclose allScope (5)
Options (3)
Assumptions (1)
Fourier sine transform of BesselJ is a piecewise function:
FourierParameters (1)
The default setting for FourierParameters is {0,1}:
Use a nondefault setting for a different definition of the transform:
To get the inverse, use the same FourierParameters setting:
GenerateConditions (1)
Use GenerateConditions->True to get the parameter conditions necessary for the result to be valid:
Properties & Relations (3)
Use Asymptotic to compute an asymptotic approximation:
FourierSinTransform and InverseFourierSinTransform are mutual inverses:
Results from FourierSinTransform and FourierTransform differ by a factor of I for odd functions:
The results differ by a factor of I for ω>0:
Possible Issues (1)
The Fourier sine transform may be given in terms of generalized functions such as DiracDelta:
Neat Examples (1)
The Fourier sine transform represented in terms of MeijerG:
Text
Wolfram Research (1999), FourierSinTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSinTransform.html.
CMS
Wolfram Language. 1999. "FourierSinTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FourierSinTransform.html.
APA
Wolfram Language. (1999). FourierSinTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierSinTransform.html