Audio Analysis

Topic
Overview  »

Audio analysis is achieved by visually or programmatically inspecting local and global features extracted from the signal. For audio signals, analysis may happen in either time or frequency, or both. The Wolfram Language provides a large collection of functions, from low-level spectral analysis to high-level functions for classifying audio signals or recognizing speech.

Audio Visualization

AudioPlot waveform plot of audio

Spectrogram spectrogram or time-frequency plot of audio

Periodogram power spectrum plot of audio

Cepstrogram power cepstra plot of audio

Analyzing Audio

AudioDistance compute a distance measure between two audio objects

AudioBlockMap apply a function to audio partitions

AudioLoudness compute different loudness standards of an audio signal

AudioIntervals  ▪  AudioMeasurements  ▪  AudioLocalMeasurements

Frequency Analysis

ShortTimeFourier compute short-time Fourier transform (STFT)

Fourier  ▪  PeriodogramArray  ▪  SpectrogramArray  ▪  CepstrogramArray  ▪  CepstrumArray  ▪  InverseShortTimeFourier  ▪  InverseSpectrogram

Understanding Audio Signals

AudioIdentify attempt to identify what an audio signal is a recording of

PitchRecognize  ▪  AudioInstanceQ

Understanding Speech »

SpeechRecognize convert a spoken audio signal to text

SpeechCases  ▪  SpeechInterpreter  ▪  ...

Audio Annotations

AudioAnnotate annotate an audio object

AudioAnnotationLookup  ▪  AnnotationDelete  ▪  AnnotationRules

Machine Learning »

Classify, Predict create and apply classifiers or predictors to audio signals

Nearest  ▪  FeatureNearest  ▪  FeatureSpacePlot  ▪  FindClusters  ▪  ...

NetEncoder  ▪  NetChain  ▪  NetGraph  ▪  ...