FourierCosTransform
FourierCosTransform[expr,t,ω]
gives the symbolic Fourier cosine transform of expr.
FourierCosTransform[expr,{t1,t2,…},{ω1,ω2,…}]
gives the multidimensional Fourier cosine transform of expr.
Details and Options
- The Fourier cosine transform of a function is by default defined to be .
- The multidimensional Fourier cosine transform of a function is by default defined to be .
- Other definitions are used in some scientific and technical fields.
- Different choices of definitions can be specified using the option FourierParameters.
- With the setting the Fourier cosine transform computed by FourierCosTransform is .
- Assumptions and other options to Integrate can also be given in FourierCosTransform.
Examples
open allclose allScope (5)
Options (3)
Assumptions (1)
Fourier cosine transform of BesselJ is a piecewise function:
FourierParameters (1)
The default setting for FourierParameters is {0,1}:
Use a nondefault setting for a different definition of transform:
To get the inverse, use the same FourierParameters setting:
GenerateConditions (1)
Use GenerateConditions->True to get parameter conditions for when a result is valid:
Properties & Relations (3)
Use Asymptotic to compute an asymptotic approximation:
FourierCosTransform and InverseFourierCosTransform are mutual inverses:
Results from FourierCosTransform and FourierTransform agree for even functions:
Possible Issues (1)
Fourier cosine transform may be given in terms of generalized functions such as DiracDelta:
Neat Examples (1)
Text
Wolfram Research (1999), FourierCosTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierCosTransform.html.
CMS
Wolfram Language. 1999. "FourierCosTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FourierCosTransform.html.
APA
Wolfram Language. (1999). FourierCosTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierCosTransform.html