FourierCosTransform
✖
FourierCosTransform
gives the multidimensional Fourier cosine transform of expr.
Details and Options




- The Fourier cosine transform is a particular way of viewing the Fourier transform without the need for complex numbers or negative frequencies.
- Joseph Fourier designed his famous transform using this and the Fourier sine transform, and they are still used in applications like signal processing, statistics and image and video compression.
- The Fourier cosine transform of the time domain function
is the frequency domain function
for
:
- The Fourier cosine transform of a function
is by default defined to be
.
- The multidimensional Fourier cosine transform of a function
is by default defined to be
or when using vector notation,
.
- Different choices of definitions can be specified using the option FourierParameters.
- The integral is computed using numerical methods if the third argument,
, is given a numerical value.
- The asymptotic Fourier cosine transform can be computed using Asymptotic.
- There are several related Fourier transformations:
-
FourierTransform infinite continuous-time functions (FT) FourierSequenceTransform infinite discrete-time functions (DTFT) FourierCoefficient finite continuous-time functions (FS) Fourier finite discrete-time functions (DFT) - The Fourier cosine transform is an automorphism in the Schwartz vector space of functions whose derivatives are rapidly decreasing and thus induces an automorphism in its dual: the space of tempered distributions. These include absolutely integrable functions, well-behaved functions of polynomial growth and compactly supported distributions.
- Hence, FourierCosTransform not only works with absolutely integrable functions on
, but it can also handle a variety of tempered distributions such as DiracDelta to enlarge the pool of functions or generalized functions it can effectively transform.
- The lower limit of the integral is effectively taken to be
, so that the Fourier cosine transform of the Dirac delta function
is equal to
. »
- The following options can be given:
-
AccuracyGoal Automatic digits of absolute accuracy sought Assumptions $Assumptions assumptions to make about parameters FourierParameters {0,1} parameters to define the Fourier cosine transform GenerateConditions False whether to generate answers that involve conditions on parameters PerformanceGoal $PerformanceGoal aspects of performance to optimize PrecisionGoal Automatic digits of precision sought WorkingPrecision Automatic the precision used in internal computations - Common settings for FourierParameters include:
-
{0,1} {1,1} {-1,1} {0,2Pi} {a,b}

Examples
open allclose allBasic Examples (6)Summary of the most common use cases
Compute the Fourier cosine transform of a function:

https://wolfram.com/xid/0mk7q7rt5qb2-p2tcor

Plot the function and its Fourier cosine transform:

https://wolfram.com/xid/0mk7q7rt5qb2-6ye72y

Fourier cosine transform of reciprocal square root:

https://wolfram.com/xid/0mk7q7rt5qb2-dcw0u5

For a different convention, change the parameters:

https://wolfram.com/xid/0mk7q7rt5qb2-qgnjxj

Fourier cosine transform of a Gaussian is another Gaussian:

https://wolfram.com/xid/0mk7q7rt5qb2-ww5ktw


https://wolfram.com/xid/0mk7q7rt5qb2-1v7uvx

Compute the Fourier cosine transform of a multivariate function:

https://wolfram.com/xid/0mk7q7rt5qb2-thp334


https://wolfram.com/xid/0mk7q7rt5qb2-wzr4fg

Compute the transform at a single point:

https://wolfram.com/xid/0mk7q7rt5qb2-dvi4zc

Scope (39)Survey of the scope of standard use cases
Basic Uses (3)
Fourier cosine transform of a function for a symbolic parameter :

https://wolfram.com/xid/0mk7q7rt5qb2-5bs32x

Fourier cosine transforms involving trigonometric functions:

https://wolfram.com/xid/0mk7q7rt5qb2-k1cefg


https://wolfram.com/xid/0mk7q7rt5qb2-esenq3


https://wolfram.com/xid/0mk7q7rt5qb2-pgpp70


https://wolfram.com/xid/0mk7q7rt5qb2-guxs6c

Evaluate the Fourier cosine transform for a numerical value of the parameter :

https://wolfram.com/xid/0mk7q7rt5qb2-jtuydl

Algebraic Functions (4)
Fourier cosine transform of power functions:

https://wolfram.com/xid/0mk7q7rt5qb2-gwmclb

Cosine transform for rational functions:

https://wolfram.com/xid/0mk7q7rt5qb2-g56fuq


https://wolfram.com/xid/0mk7q7rt5qb2-fjkzat


https://wolfram.com/xid/0mk7q7rt5qb2-gwgokl


https://wolfram.com/xid/0mk7q7rt5qb2-0zcnkl

Fourier cosine transform of a quotient of two nonlinear polynomials:

https://wolfram.com/xid/0mk7q7rt5qb2-550jfl


https://wolfram.com/xid/0mk7q7rt5qb2-5kvwu

Fourier cosine transform of a quotient of quadratic and quartic polynomials:

https://wolfram.com/xid/0mk7q7rt5qb2-69mtza


https://wolfram.com/xid/0mk7q7rt5qb2-xlrn8r

Exponential and Logarithmic Functions (3)
Fourier cosine transform of an exponential function:

https://wolfram.com/xid/0mk7q7rt5qb2-f07azt


https://wolfram.com/xid/0mk7q7rt5qb2-cedi5l


https://wolfram.com/xid/0mk7q7rt5qb2-wu1agn

Fourier cosine transforms of products of exponential and trigonometric functions:

https://wolfram.com/xid/0mk7q7rt5qb2-9gu2r1


https://wolfram.com/xid/0mk7q7rt5qb2-sxteev


https://wolfram.com/xid/0mk7q7rt5qb2-4zknlr


https://wolfram.com/xid/0mk7q7rt5qb2-3pnitz

Cosine transforms of logarithmic functions:

https://wolfram.com/xid/0mk7q7rt5qb2-rvogt8


https://wolfram.com/xid/0mk7q7rt5qb2-3seif6


https://wolfram.com/xid/0mk7q7rt5qb2-ukk5x8


https://wolfram.com/xid/0mk7q7rt5qb2-taggka


https://wolfram.com/xid/0mk7q7rt5qb2-7pmgex


https://wolfram.com/xid/0mk7q7rt5qb2-p0d40t


https://wolfram.com/xid/0mk7q7rt5qb2-2nvqvz


https://wolfram.com/xid/0mk7q7rt5qb2-cv28j0

Trigonometric Functions (5)
Expressions involving trigonometric functions:

https://wolfram.com/xid/0mk7q7rt5qb2-ce36ke


https://wolfram.com/xid/0mk7q7rt5qb2-cvajrq

Composition of elementary functions:

https://wolfram.com/xid/0mk7q7rt5qb2-1x47i6


https://wolfram.com/xid/0mk7q7rt5qb2-1f40do

Ratio of sine and product of exponential and linear functions:

https://wolfram.com/xid/0mk7q7rt5qb2-g5t4pp


https://wolfram.com/xid/0mk7q7rt5qb2-xd3bye

Fourier cosine transform of arctangent functions:

https://wolfram.com/xid/0mk7q7rt5qb2-0fdg43


https://wolfram.com/xid/0mk7q7rt5qb2-y8iia5


https://wolfram.com/xid/0mk7q7rt5qb2-2n9z25


https://wolfram.com/xid/0mk7q7rt5qb2-dvz0vq

Fourier cosine transform of Sech is another Sech:

https://wolfram.com/xid/0mk7q7rt5qb2-wtwgxh


https://wolfram.com/xid/0mk7q7rt5qb2-xyvbln

Special Functions (7)
Sinc function:

https://wolfram.com/xid/0mk7q7rt5qb2-31q6j8


https://wolfram.com/xid/0mk7q7rt5qb2-vo1vn2

Fourier cosine transforms of expressions involving ExpIntegralEi:

https://wolfram.com/xid/0mk7q7rt5qb2-6qd4e0


https://wolfram.com/xid/0mk7q7rt5qb2-34zfcg

Expression involving Erfc:

https://wolfram.com/xid/0mk7q7rt5qb2-g7ojs9


https://wolfram.com/xid/0mk7q7rt5qb2-m91upc

Expression involving SinIntegral:

https://wolfram.com/xid/0mk7q7rt5qb2-spacqd


https://wolfram.com/xid/0mk7q7rt5qb2-3gwf7z


https://wolfram.com/xid/0mk7q7rt5qb2-4ryyap


https://wolfram.com/xid/0mk7q7rt5qb2-lpmhs9

Cosine transforms for BesselJ functions:

https://wolfram.com/xid/0mk7q7rt5qb2-1dema4


https://wolfram.com/xid/0mk7q7rt5qb2-fzv48


https://wolfram.com/xid/0mk7q7rt5qb2-ujzfxs


https://wolfram.com/xid/0mk7q7rt5qb2-5ikc3a


https://wolfram.com/xid/0mk7q7rt5qb2-fota1b


https://wolfram.com/xid/0mk7q7rt5qb2-oujib3


https://wolfram.com/xid/0mk7q7rt5qb2-8916gw


https://wolfram.com/xid/0mk7q7rt5qb2-ucezzb

Cosine transforms for BesselY functions:

https://wolfram.com/xid/0mk7q7rt5qb2-gymguc


https://wolfram.com/xid/0mk7q7rt5qb2-f8qei2


https://wolfram.com/xid/0mk7q7rt5qb2-ksw98u


https://wolfram.com/xid/0mk7q7rt5qb2-z955xt

Piecewise Functions and Distributions (4)
Fourier cosine transform of a piecewise function:

https://wolfram.com/xid/0mk7q7rt5qb2-wmi67f


https://wolfram.com/xid/0mk7q7rt5qb2-2fzir2

Restriction of a sine function to a half-period:

https://wolfram.com/xid/0mk7q7rt5qb2-8an9nd


https://wolfram.com/xid/0mk7q7rt5qb2-75reqt


https://wolfram.com/xid/0mk7q7rt5qb2-vtshg5


https://wolfram.com/xid/0mk7q7rt5qb2-yuhkm5

Transforms in terms of FresnelC:

https://wolfram.com/xid/0mk7q7rt5qb2-3vutk1


https://wolfram.com/xid/0mk7q7rt5qb2-fye5aq


https://wolfram.com/xid/0mk7q7rt5qb2-u5hicw


https://wolfram.com/xid/0mk7q7rt5qb2-l8c2cs

Periodic Functions (2)
Fourier cosine transform of cosine:

https://wolfram.com/xid/0mk7q7rt5qb2-i383mn

Fourier cosine transform of SquareWave:

https://wolfram.com/xid/0mk7q7rt5qb2-1ay4cq


https://wolfram.com/xid/0mk7q7rt5qb2-pp7b3q

Generalized Functions (4)
Fourier cosine transforms of expressions involving HeavisideTheta:

https://wolfram.com/xid/0mk7q7rt5qb2-f2e1xq


https://wolfram.com/xid/0mk7q7rt5qb2-n43u35


https://wolfram.com/xid/0mk7q7rt5qb2-e43qk9


https://wolfram.com/xid/0mk7q7rt5qb2-l3p5a2

Fourier cosine transforms involving DiracDelta:

https://wolfram.com/xid/0mk7q7rt5qb2-1fgrwd


https://wolfram.com/xid/0mk7q7rt5qb2-9rmagq


https://wolfram.com/xid/0mk7q7rt5qb2-bmouhy


https://wolfram.com/xid/0mk7q7rt5qb2-qtq8ux


https://wolfram.com/xid/0mk7q7rt5qb2-n4qcpi


https://wolfram.com/xid/0mk7q7rt5qb2-5gk41t

Fourier cosine transform involving HeavisideLambda:

https://wolfram.com/xid/0mk7q7rt5qb2-7c77l1


https://wolfram.com/xid/0mk7q7rt5qb2-xz26mz

Fourier cosine transform involving HeavisidePi:

https://wolfram.com/xid/0mk7q7rt5qb2-1gzes


https://wolfram.com/xid/0mk7q7rt5qb2-owzoy3

Multivariate Functions (2)
Fourier cosine transforms of exponentials in two variables:

https://wolfram.com/xid/0mk7q7rt5qb2-m5wgxc


https://wolfram.com/xid/0mk7q7rt5qb2-8dlol1


https://wolfram.com/xid/0mk7q7rt5qb2-t352wi


https://wolfram.com/xid/0mk7q7rt5qb2-5xlxxb

Fourier cosine transform of product of exponential and SquareWave:

https://wolfram.com/xid/0mk7q7rt5qb2-8haesz


https://wolfram.com/xid/0mk7q7rt5qb2-u1nlix

Formal Properties (3)
Fourier cosine transform of a first-order derivative:

https://wolfram.com/xid/0mk7q7rt5qb2-qh1s7g

Fourier cosine transform of a second-order derivative:

https://wolfram.com/xid/0mk7q7rt5qb2-v762xl

Fourier cosine transform threads itself over equations:

https://wolfram.com/xid/0mk7q7rt5qb2-8u929y

Numerical Evaluation (2)
Calculate the Fourier cosine transform at a single point:

https://wolfram.com/xid/0mk7q7rt5qb2-b0w5t

Alternatively, calculate the Fourier cosine transform symbolically:

https://wolfram.com/xid/0mk7q7rt5qb2-nz33l8

Then evaluate it for specific value of :

https://wolfram.com/xid/0mk7q7rt5qb2-j4vp9p

Options (8)Common values & functionality for each option
AccuracyGoal (1)
The option AccuracyGoal sets the number of digits of accuracy:

https://wolfram.com/xid/0mk7q7rt5qb2-5ymjb


https://wolfram.com/xid/0mk7q7rt5qb2-f6u3ua


https://wolfram.com/xid/0mk7q7rt5qb2-ld9md4

Assumptions (1)
Fourier cosine transform of BesselJ is a piecewise function:

https://wolfram.com/xid/0mk7q7rt5qb2-nagwk1


https://wolfram.com/xid/0mk7q7rt5qb2-fk9tc3

FourierParameters (3)
Fourier cosine transform for the unit box function with different parameters:

Use a nondefault setting for a different definition of transform:

https://wolfram.com/xid/0mk7q7rt5qb2-ejscab

To get the inverse, use the same FourierParameters setting:

https://wolfram.com/xid/0mk7q7rt5qb2-j5l0np

Set up your particular global choice of parameters once per session:

https://wolfram.com/xid/0mk7q7rt5qb2-82g0uf


https://wolfram.com/xid/0mk7q7rt5qb2-gz54fq


https://wolfram.com/xid/0mk7q7rt5qb2-8p4bec

GenerateConditions (1)
Use GenerateConditionsTrue to get parameter conditions for when a result is valid:

https://wolfram.com/xid/0mk7q7rt5qb2-dosv41

PrecisionGoal (1)
The option PrecisionGoal sets the relative tolerance in the integration:

https://wolfram.com/xid/0mk7q7rt5qb2-n3x5d0


https://wolfram.com/xid/0mk7q7rt5qb2-9119x


https://wolfram.com/xid/0mk7q7rt5qb2-b3dg8e

WorkingPrecision (1)
If a WorkingPrecision is specified, the computation is done at that working precision:

https://wolfram.com/xid/0mk7q7rt5qb2-dipupy


https://wolfram.com/xid/0mk7q7rt5qb2-duvdjv


https://wolfram.com/xid/0mk7q7rt5qb2-iorkcp

Applications (4)Sample problems that can be solved with this function
Ordinary Differential Equations (1)
Consider the following ODE with initial condition :

https://wolfram.com/xid/0mk7q7rt5qb2-7nyko5

Apply the Fourier cosine transform to the ODE:

https://wolfram.com/xid/0mk7q7rt5qb2-vneovh

Solve for the Fourier cosine transform of :

https://wolfram.com/xid/0mk7q7rt5qb2-o8i7eo

Find the inverse Fourier cosine transform with and
:

https://wolfram.com/xid/0mk7q7rt5qb2-o2vnsc

Compare with DSolveValue:

https://wolfram.com/xid/0mk7q7rt5qb2-p6a0xe

Partial Differential Equations (1)
Solve the heat equation for ,
:
with initial condition
for
and Neumann boundary condition
for
.

https://wolfram.com/xid/0mk7q7rt5qb2-px64a0
Apply the Fourier cosine transform to the ODE on :

https://wolfram.com/xid/0mk7q7rt5qb2-2kme07


https://wolfram.com/xid/0mk7q7rt5qb2-ehtvs7

Compute the inverse cosine transform of the exponential functions:

https://wolfram.com/xid/0mk7q7rt5qb2-ccx48j
The convolution property gives the inverse cosine transform of the first summand to get the solution:

https://wolfram.com/xid/0mk7q7rt5qb2-h6hd7

Consider the special case with ,
and
:

https://wolfram.com/xid/0mk7q7rt5qb2-jgjd13

Compare with DSolveValue:

https://wolfram.com/xid/0mk7q7rt5qb2-dkim4w

Plot the initial conditions and solutions for different values of .

https://wolfram.com/xid/0mk7q7rt5qb2-t3wb9i

Evaluation of Integrals (2)
Calculate the following definite integral:

https://wolfram.com/xid/0mk7q7rt5qb2-mvl6f4

Fourier cosine transform preserves integration of products over :

https://wolfram.com/xid/0mk7q7rt5qb2-0i61ex


https://wolfram.com/xid/0mk7q7rt5qb2-gojuf4

Compare with Integrate:

https://wolfram.com/xid/0mk7q7rt5qb2-8yvy61

Calculate the following definite integral for :

https://wolfram.com/xid/0mk7q7rt5qb2-xpx1az

Compute Fourier cosine transform of an exponential function:

https://wolfram.com/xid/0mk7q7rt5qb2-g76rkm


https://wolfram.com/xid/0mk7q7rt5qb2-l3jwfg


https://wolfram.com/xid/0mk7q7rt5qb2-5w5yeo

Solve for the definite integral:

https://wolfram.com/xid/0mk7q7rt5qb2-y2ew8h

Compare with Integrate:

https://wolfram.com/xid/0mk7q7rt5qb2-e84l8t

Properties & Relations (4)Properties of the function, and connections to other functions
By default, the Fourier cosine transform of is:

https://wolfram.com/xid/0mk7q7rt5qb2-nbvwzu

For , the definite integral becomes:

https://wolfram.com/xid/0mk7q7rt5qb2-tj5dfk

Compare with FourierCosTransform:

https://wolfram.com/xid/0mk7q7rt5qb2-oy2spl

Use Asymptotic to compute an asymptotic approximation:

https://wolfram.com/xid/0mk7q7rt5qb2-lwbzos

FourierCosTransform and InverseFourierCosTransform are mutual inverses:

https://wolfram.com/xid/0mk7q7rt5qb2-bp78fy


https://wolfram.com/xid/0mk7q7rt5qb2-bhj9ka


https://wolfram.com/xid/0mk7q7rt5qb2-it7bfn


https://wolfram.com/xid/0mk7q7rt5qb2-byd6ra

Results from FourierCosTransform and FourierTransform agree for even functions:

https://wolfram.com/xid/0mk7q7rt5qb2-coouyp


https://wolfram.com/xid/0mk7q7rt5qb2-dn4tm5


https://wolfram.com/xid/0mk7q7rt5qb2-b2ebmr

Possible Issues (1)Common pitfalls and unexpected behavior
The result from an inverse Fourier cosine transform may not have the same form as the original:

https://wolfram.com/xid/0mk7q7rt5qb2-e33562


https://wolfram.com/xid/0mk7q7rt5qb2-0996p9

Fourier cosine transform may be given in terms of generalized functions such as DiracDelta:

https://wolfram.com/xid/0mk7q7rt5qb2-mjrqa7

Neat Examples (2)Surprising or curious use cases
Wolfram Research (1999), FourierCosTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierCosTransform.html (updated 2025).
Text
Wolfram Research (1999), FourierCosTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierCosTransform.html (updated 2025).
Wolfram Research (1999), FourierCosTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierCosTransform.html (updated 2025).
CMS
Wolfram Language. 1999. "FourierCosTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/FourierCosTransform.html.
Wolfram Language. 1999. "FourierCosTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/FourierCosTransform.html.
APA
Wolfram Language. (1999). FourierCosTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierCosTransform.html
Wolfram Language. (1999). FourierCosTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierCosTransform.html
BibTeX
@misc{reference.wolfram_2025_fouriercostransform, author="Wolfram Research", title="{FourierCosTransform}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/FourierCosTransform.html}", note=[Accessed: 20-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_fouriercostransform, organization={Wolfram Research}, title={FourierCosTransform}, year={2025}, url={https://reference.wolfram.com/language/ref/FourierCosTransform.html}, note=[Accessed: 20-April-2025
]}