WOLFRAM SYSTEM MODELER

AngularVelocity

Wolfram Language

In[1]:=
SystemModel["Modelica.SIunits.AngularVelocity"]
Out[1]:=

Type Information

AngularVelocity

Quantity: "AngularVelocity"

Unit: rad/s

Used in Examples (57)

AIMC_DOL

Modelica.Electrical.Machines.Examples.AsynchronousInductionMachines

Test example: AsynchronousInductionMachineSquirrelCage direct-on-line

AIMC_YD

Modelica.Electrical.Machines.Examples.AsynchronousInductionMachines

Test example: AsynchronousInductionMachineSquirrelCage Y-D

AIMC_Transformer

Modelica.Electrical.Machines.Examples.AsynchronousInductionMachines

Test example: AsynchronousInductionMachineSquirrelCage transformer starting

AIMS_Start

Modelica.Electrical.Machines.Examples.AsynchronousInductionMachines

Test example: AsynchronousInductionMachineSlipRing

AIMC_Conveyor

Modelica.Electrical.Machines.Examples.AsynchronousInductionMachines

Test example: AsynchronousInductionMachineSquirrelCage with inverter driving a conveyor

AIMC_Steinmetz

Modelica.Electrical.Machines.Examples.AsynchronousInductionMachines

AsynchronousInductionMachineSquirrelCage Steinmetz-connection

AIMC_withLosses

Modelica.Electrical.Machines.Examples.AsynchronousInductionMachines

Test example: AsynchronousInductionMachineSquirrelCage with losses

AIMC_Initialize

Modelica.Electrical.Machines.Examples.AsynchronousInductionMachines

Test example: Steady-State Initialization of AsynchronousInductionMachineSquirrelCage

SMPM_CurrentSource

Modelica.Electrical.Machines.Examples.SynchronousInductionMachines

Test example: PermanentMagnetSynchronousInductionMachine fed by current source

SMPM_VoltageSource

Modelica.Electrical.Machines.Examples.SynchronousInductionMachines

Test example: PermanentMagnetSynchronousInductionMachine fed by FOC

SMEE_Generator

Modelica.Electrical.Machines.Examples.SynchronousInductionMachines

Test example: ElectricalExcitedSynchronousInductionMachine as Generator

SMEE_LoadDump

Modelica.Electrical.Machines.Examples.SynchronousInductionMachines

Test example: ElectricalExcitedSynchronousInductionMachine with voltage controller

SMEE_Rectifier

Modelica.Electrical.Machines.Examples.SynchronousInductionMachines

Test example: ElectricalExcitedSynchronousInductionMachine with rectifier

DCPM_CurrentControlled

Modelica.Electrical.Machines.Examples.DCMachines

Test example: DC with permanent magnet starting with current controller

DCSE_Start

Modelica.Electrical.Machines.Examples.DCMachines

Test example: DC with serial excitation starting with voltage ramp

DCSE_SinglePhase

Modelica.Electrical.Machines.Examples.DCMachines

Test example: DC with serial excitation starting with voltage ramp

DCPM_Temperature

Modelica.Electrical.Machines.Examples.DCMachines

Test example: Investigate temperature dependency of a DCPM motor

DCPM_Cooling

Modelica.Electrical.Machines.Examples.DCMachines

Test example: Cooling of a DCPM motor

DCPM_QuasiStationary

Modelica.Electrical.Machines.Examples.DCMachines

Test example: Compare DCPM motors transient - quasistationary

DCPM_withLosses

Modelica.Electrical.Machines.Examples.DCMachines

Test example: Investigate influence of losses on DCPM motor performance

ThyristorBridge2mPulse_DC_Drive

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2mPulse

2*m pulse thyristor bridge feeding a DC drive

AIMC_DOL

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Direct on line (DOL) start of asynchronous induction machine with squirrel cage

AIMC_DOL_MultiPhase

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Direct on line start of multi phase asynchronous induction machine with squirrel cage

AIMC_YD

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Asynchronous induction machine with squirrel cage starting Y-D

AIMC_Transformer

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Asynchronous induction machine with squirrel cage starting with transformer

AIMC_Conveyor

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Asynchronous induction machine with squirrel cage and inverter driving a conveyor

AIMC_Steinmetz

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Asynchronous induction machine with squirrel cage and Steinmetz-connection

AIMC_withLosses

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Asynchronous induction machine with squirrel cage and losses

AIMC_Initialize

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Steady-state initialization of asynchronous induction machine with squirrel cage

AIMS_Start

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Starting of asynchronous induction machine with slip rings

AIMS_Start_MultiPhase

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Starting of multi phase asynchronous induction machine with slip rings

SMPM_CurrentSource

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Test example: PermanentMagnetSynchronousInductionMachine fed by current source

SMPM_VoltageSource

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Test example: PermanentMagnetSynchronousInductionMachine fed by FOC

SMEE_Generator_MultiPhase

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Electrical excited multi phase synchronous machine operating as generator

SMEE_Generator

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Electrical excited synchronous machine operating as generator

SMEE_LoadDump

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Test example: ElectricalExcitedSynchronousInductionMachine with voltage controller

SMEE_Rectifier

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Test example: ElectricalExcitedSynchronousInductionMachine with rectifier

IMC_Characteristics

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines

Characteristic curves of Induction machine with squirrel cage

IMC_DOL

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines

Induction machine with squirrel cage started directly on line (DOL)

IMC_YD

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines

Induction machine with squirrel cage starting Y-D

IMC_Transformer

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines

Induction machine with squirrel cage starting with transformer

IMC_Conveyor

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines

Induction machine with squirrel cage and inverter driving a conveyor

IMC_withLosses

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines

Induction machine with squirrel cage and losses

IMC_Initialize

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines

Steady-state initialization of induction machine with squirrel cage

IMS_Characteristics

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines

Characteristic curves of induction machine with slip rings

IMS_Start

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines

Starting of induction machine with slip rings

SMPM_MTPA

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Test example: PermanentMagnetSynchronousMachine, investigating maximum torque per Amps

SMEE_Generator

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Electrical excited synchronous machine operating as generator

Fourbar1

Modelica.Mechanics.MultiBody.Examples.Loops

One kinematic loop with four bars (with only revolute joints; 5 non-linear equations)

Fourbar2

Modelica.Mechanics.MultiBody.Examples.Loops

One kinematic loop with four bars (with UniversalSpherical joint; 1 non-linear equation)

Fourbar_analytic

Modelica.Mechanics.MultiBody.Examples.Loops

One kinematic loop with four bars (with JointSSP joint; analytic solution of non-linear algebraic loop)

BevelGear1D

Modelica.Mechanics.MultiBody.Examples.Rotational3DEffects

Demonstrates the usage of a BevelGear1D model and how to calculate the power of such an element

oneAxis

Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3

Model of one axis of robot (controller, motor, gearbox) with simple load

fullRobot

Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3

Six degree of freedom robot with path planning, controllers, motors, brakes, gears and mechanics

SimpleGearShift

Modelica.Mechanics.Rotational.Examples

Simple Gearshift

WaterPump

Modelica.Thermal.FluidHeatFlow.Examples

Water pumping station

readRealParameterModel

Modelica.Utilities.Examples

Demonstrate usage of Examples.readRealParameter/.expression

Used in Components (83)

ComplexRotatingPhasor

Modelica.ComplexBlocks.Sources

Generate a phasor with constant magnitude and constant angular velocity of type Complex

EMF

Modelica.Electrical.Analog.Basic

Electromotoric force (electric/mechanic transformer)

DriveDataDCPM

Modelica.Electrical.Machines.Examples.ControlledDCDrives.Utilities

Parameters of a controlled DC permanent magnet drive

PartialAirGapDC

Modelica.Electrical.Machines.BasicMachines.Components

Partial airgap model of a DC machine

FrictionParameters

Modelica.Electrical.Machines.Losses

Parameter record for friction losses

StrayLoadParameters

Modelica.Electrical.Machines.Losses

Parameter record for stray load losses

CoreParameters

Modelica.Electrical.Machines.Losses

Parameter record for core losses

PermanentMagnetLossParameters

Modelica.Electrical.Machines.Losses

Parameter record for permanent magnet losses

Core

Modelica.Electrical.Machines.Losses.InductionMachines

Model of core losses

Core

Modelica.Electrical.Machines.Losses.DCMachines

Model of core losses

PartialBasicMachine

Modelica.Electrical.Machines.Interfaces

Partial model for all machines

PartialBasicDCMachine

Modelica.Electrical.Machines.Interfaces

Partial model for DC machine

FlangeSupport

Modelica.Electrical.Machines.Interfaces

Shaft and support

DcPermanentMagnetData

Modelica.Electrical.Machines.Utilities.ParameterRecords

Common parameters for DC machines

VoltageController

Modelica.Electrical.Machines.Utilities

Voltage controller

SynchronousMachineData

Modelica.Electrical.Machines.Utilities

Computes machine parameter from usual datasheet

TwoPin

Modelica.Electrical.QuasiStationary.SinglePhase.Interfaces

Two pins

AbsoluteSensor

Modelica.Electrical.QuasiStationary.SinglePhase.Interfaces

Partial potential sensor

PowerSensor

Modelica.Electrical.QuasiStationary.MultiPhase.Sensors

Power sensor

TwoPlug

Modelica.Electrical.QuasiStationary.MultiPhase.Interfaces

Two plugs with pin-adapter

OnePort

Modelica.Electrical.QuasiStationary.MultiPhase.Interfaces

AbsoluteSensor

Modelica.Electrical.QuasiStationary.MultiPhase.Interfaces

Partial potential sensor

PartialBasicInductionMachine

Modelica.Magnetic.FundamentalWave.Interfaces

Partial model for induction machine

ElectroMagneticConverter

Modelica.Magnetic.QuasiStatic.FluxTubes.Basic

Electro-magnetic energy conversion

PartialTwoPortsElementary

Modelica.Magnetic.QuasiStatic.FluxTubes.Interfaces

Partial component with two magnetic ports p and n for textual programming

AbsoluteSensor

Modelica.Magnetic.QuasiStatic.FluxTubes.Interfaces

Partial potential sensor

Source

Modelica.Magnetic.QuasiStatic.FluxTubes.Interfaces

Partial magnetic voltage or flux source

EddyCurrent

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components

Constant loss model under sinusoidal magnetic conditions

MultiPhaseElectroMagneticConverter

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components

Multi phase electro magnetic converter

QuasiStaticAnalogElectroMagneticConverter

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components

Electro magnetic converter to only (!) quasi static analog, neglecting induced voltage

PartialBasicMachine

Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.BaseClasses

Partial model for quasi static multi phase machines

PartialTwoPort

Modelica.Magnetic.QuasiStatic.FundamentalWave.Interfaces

Partial two port for graphical programming

PathPlanning1

Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components

Generate reference angles for fastest kinematic movement

PathPlanning6

Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components

Generate reference angles for fastest kinematic movement

GearType1

Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components

Motor inertia and gearbox model for r3 joints 1,2,3

GearType2

Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components

Motor inertia and gearbox model for r3 joints 4,5,6

Motor

Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components

Motor model including current controller of r3 motors

MechanicalStructure

Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components

Model of the mechanical part of the r3 robot (without animation)

Orientation

Modelica.Mechanics.MultiBody.Frames

Orientation object defining rotation from a frame 1 into a frame 2

Revolute

Modelica.Mechanics.MultiBody.Joints

Revolute joint (1 rotational degree-of-freedom, 2 potential states, optional axis flange)

Cylindrical

Modelica.Mechanics.MultiBody.Joints

Cylindrical joint (2 degrees-of-freedom, 4 potential states)

Universal

Modelica.Mechanics.MultiBody.Joints

Universal joint (2 degrees-of-freedom, 4 potential states)

Planar

Modelica.Mechanics.MultiBody.Joints

Planar joint (3 degrees-of-freedom, 6 potential states)

Spherical

Modelica.Mechanics.MultiBody.Joints

Spherical joint (3 constraints and no potential states, or 3 degrees-of-freedom and 3 states)

FreeMotion

Modelica.Mechanics.MultiBody.Joints

Free motion joint (6 degrees-of-freedom, 12 potential states)

UniversalSpherical

Modelica.Mechanics.MultiBody.Joints

Universal - spherical joint aggregation (1 constraint, no potential states)

GearConstraint

Modelica.Mechanics.MultiBody.Joints

Ideal 3-dim. gearbox (arbitrary shaft directions)

RollingWheel

Modelica.Mechanics.MultiBody.Joints

Joint (no mass, no inertia) that describes an ideal rolling wheel (rolling on the plane z=0)

RollingWheelSet

Modelica.Mechanics.MultiBody.Joints

Joint (no mass, no inertia) that describes an ideal rolling wheel set (two ideal rolling wheels connected together by an axis)

JointUPS

Modelica.Mechanics.MultiBody.Joints.Assemblies

Universal - prismatic - spherical joint aggregation (no constraints, no potential states)

RollingConstraintVerticalWheel

Modelica.Mechanics.MultiBody.Joints.Internal

Rolling constraint for wheel that is always perpendicular to x-y plane

Body

Modelica.Mechanics.MultiBody.Parts

Rigid body with mass, inertia tensor and one frame connector (12 potential states)

BodyShape

Modelica.Mechanics.MultiBody.Parts

Rigid body with mass, inertia tensor, different shapes for animation, and two frame connectors (12 potential states)

BodyBox

Modelica.Mechanics.MultiBody.Parts

Rigid body with box shape. Mass and animation properties are computed from box data and density (12 potential states)

BodyCylinder

Modelica.Mechanics.MultiBody.Parts

Rigid body with cylinder shape. Mass and animation properties are computed from cylinder data and density (12 potential states)

Rotor1D

Modelica.Mechanics.MultiBody.Parts

1D inertia attachable on 3-dim. bodies (3D dynamic effects are taken into account if world.driveTrainMechanics3D=true)

RotorWith3DEffects

Modelica.Mechanics.MultiBody.Parts.Rotor1D

1D inertia attachable on 3-dim. bodies (3D dynamic effects are taken into account)

RollingWheel

Modelica.Mechanics.MultiBody.Parts

Ideal rolling wheel on flat surface z=0 (5 positional, 3 velocity degrees of freedom)

RollingWheelSet

Modelica.Mechanics.MultiBody.Parts

Ideal rolling wheel set consisting of two ideal rolling wheels connected together by an axis

SpringDamperNoRelativeStates

Modelica.Mechanics.Rotational.Examples.Utilities

Linear 1D rotational spring and damper in parallel (phi and w are not used as states)

Inertia

Modelica.Mechanics.Rotational.Components

1D-rotational component with inertia

BearingFriction

Modelica.Mechanics.Rotational.Components

Coulomb friction in bearings

Brake

Modelica.Mechanics.Rotational.Components

Brake based on Coulomb friction

OneWayClutch

Modelica.Mechanics.Rotational.Components

Parallel connection of freewheel and clutch

LossyGear

Modelica.Mechanics.Rotational.Components

Gear with mesh efficiency and bearing friction (stuck/rolling possible)

Gearbox

Modelica.Mechanics.Rotational.Components

Realistic model of a gearbox (based on LossyGear)

InitializeFlange

Modelica.Mechanics.Rotational.Components

Initializes a flange with pre-defined angle, speed and angular acceleration (usually, this is reference data from a control bus)

RelativeStates

Modelica.Mechanics.Rotational.Components

Definition of relative state variables

AccSensor

Modelica.Mechanics.Rotational.Sensors

Ideal sensor to measure the absolute flange angular acceleration

RelAccSensor

Modelica.Mechanics.Rotational.Sensors

Ideal sensor to measure the relative angular acceleration between two flanges

Position

Modelica.Mechanics.Rotational.Sources

Forced movement of a flange according to a reference angle signal

Speed

Modelica.Mechanics.Rotational.Sources

Forced movement of a flange according to a reference angular velocity signal

Accelerate

Modelica.Mechanics.Rotational.Sources

Forced movement of a flange according to an acceleration signal

LinearSpeedDependentTorque

Modelica.Mechanics.Rotational.Sources

Linear dependency of torque versus speed

QuadraticSpeedDependentTorque

Modelica.Mechanics.Rotational.Sources

Quadratic dependency of torque versus speed

ConstantTorque

Modelica.Mechanics.Rotational.Sources

Constant torque, not dependent on speed

SignTorque

Modelica.Mechanics.Rotational.Sources

Constant torque changing sign with speed

ConstantSpeed

Modelica.Mechanics.Rotational.Sources

Constant speed, not dependent on torque

EddyCurrentTorque

Modelica.Mechanics.Rotational.Sources

Simple model of a rotational eddy current brake

PartialCompliantWithRelativeStates

Modelica.Mechanics.Rotational.Interfaces

Partial model for the compliant connection of two rotational 1-dim. shaft flanges where the relative angle and speed are used as preferred states

PartialFriction

Modelica.Mechanics.Rotational.Interfaces

Partial model of Coulomb friction elements

Pump

Modelica.Fluid.Machines

Centrifugal pump with mechanical connector for the shaft

IdealPump

Modelica.Thermal.FluidHeatFlow.Sources

Model of an ideal pump