generates a contour plot from a three-dimensional array of values.


generates a contour plot from values defined at specified points in threedimensional space.

Details and Options


open allclose all

Basic Examples  (5)

Find a contour in an array of values:

Find several contours:

Find a contour from irregular data:

Style the contours:

Use legends to identify contours by color:

Scope  (5)

Data  (5)

For regular data consisting of values, the , , and data ranges are taken to be integer values:

Provide explicit , , and data ranges by using DataRange:

For irregular data consisting of triples, the , , and data ranges are inferred from data:

Use MaxPlotPoints to limit the number of points used:

Use data with a different unit for each dimension:

Specify the units to use:

Options  (62)

AxesLabel  (2)

Label the axes in a plot:

AxesLabel->Automatic includes units when available:

BoundaryStyle  (3)

Use a red boundary around the edges of the contours:

Use None to omit the boundary:

BoundaryStyle applies to holes cut by RegionFunction:

BoxRatios  (3)

By default, the edges of the bounding box have the same length:

Specify the ratios between the bounding box lengths:

Use the actual coordinate values for the ratios:

ColorFunction  (5)

Color the contours according to the , , , or values:

Use a named color gradient:

ColorFunction has higher priority than ContourStyle:

Use red when :

ColorFunction has lower priority than MeshShading:

ColorFunctionScaling  (2)

Use unscaled values to color the contours:

Use an overlay density based on the coordinate values:

Contours  (3)

Use five equally spaced contours:

Use automatic contour selection:

Use specific contours:

ContourStyle  (7)

Use transparent contours:

Use distinct colors for each contour:

Use FaceForm to get different colors on the inside and outside:

Alternate styles for contour surfaces:

Use the same style for all the contours:

ColorFunction has higher priority than ContourStyle:

MeshShading has higher priority than ContourStyle:

DataRange  (3)

Arrays of values are displayed against the number of elements in each direction:

Rescale to the sampling space:

Tuples are interpreted as , , , coordinates:

MaxPlotPoints  (3)

ListContourPlot normally uses all of the points in the dataset:

Limit the number of points used in each direction:

MaxPlotPoints imposes a regular grid on irregular data:

Mesh  (6)

Show the complete mesh:

Use None to not draw any mesh:

Use five mesh levels in each direction:

Use five mesh levels in the direction and 10 in the direction:

Use mesh lines at specific values:

Use different styles for different mesh lines:

MeshFunctions  (2)

Use a mesh evenly spaced in the , , and directions:

Mesh with respect to radial distance:

MeshShading  (5)

Alternate red and blue sections in the direction:

MeshShading has higher priority than ContourStyle for styling:

Use ContourStyle for some segments by setting MeshShading to Automatic:

MeshShading can be used with ColorFunction:

Fill between regions defined by multiple mesh functions:

MeshStyle  (2)

Use a dashed mesh in the direction:

Use a dashed mesh in the direction and a blue mesh in the direction:

PerformanceGoal  (2)

Generate a higher-quality plot:

Emphasize performance, possibly at the cost of quality:

PlotRange  (2)

Show the contours over the full , , range:

Use specific ranges to show more detail:

PlotTheme  (3)

Use a highly stylized theme:

Adjust the appearance by removing the ticks and some mesh lines:

Create a thick surface for 3D printing:

RegionFunction  (2)

Select a region in , , and :

Remove a wedge to see hidden features:

TargetUnits  (1)

Units are automatically determined from the data:

Specify the units to use:

TextureCoordinateFunction  (5)

Textures use scaled and coordinates by default:

Use the and coordinates:

Use different textures for different surfaces:

Use unscaled coordinates:

Use textures to highlight how parameters map onto a surface:

TextureCoordinateScaling  (1)

Use scaled or unscaled coordinates for textures:

Neat Examples  (1)

The zero contour for a random field:

Wolfram Research (2007), ListContourPlot3D, Wolfram Language function, (updated 2016).


Wolfram Research (2007), ListContourPlot3D, Wolfram Language function, (updated 2016).


@misc{reference.wolfram_2020_listcontourplot3d, author="Wolfram Research", title="{ListContourPlot3D}", year="2016", howpublished="\url{}", note=[Accessed: 16-January-2021 ]}


@online{reference.wolfram_2020_listcontourplot3d, organization={Wolfram Research}, title={ListContourPlot3D}, year={2016}, url={}, note=[Accessed: 16-January-2021 ]}


Wolfram Language. 2007. "ListContourPlot3D." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016.


Wolfram Language. (2007). ListContourPlot3D. Wolfram Language & System Documentation Center. Retrieved from