WOLFRAM SYSTEMMODELER

Angle

Wolfram Language

In[1]:=
SystemModel["Modelica.SIunits.Angle"]
Out[1]:=

Type Information

Real

Quantity: Angle

Unit: rad

Display Unit: deg

Used in Examples (43)

PID_Controller

Modelica.Blocks.Examples

Demonstrates the usage of a Continuous.LimPID controller

ShowTransferFunction

Modelica.ComplexBlocks.Examples

Test Complex Transfer Function Block

ShowSaturatingInductor

Modelica.Electrical.Analog.Examples

Simple demo to show behaviour of SaturatingInductor component

CompareTransformers

Modelica.Electrical.Analog.Examples

Transformer circuit to show the magnetization facilities

SMEE_DOL

Modelica.Electrical.Machines.Examples.SynchronousInductionMachines

Test example: ElectricalExcitedSynchronousInductionMachine starting direct on line

SMEE_Generator

Modelica.Electrical.Machines.Examples.SynchronousInductionMachines

Test example: ElectricalExcitedSynchronousInductionMachine as Generator

Thyristor1Pulse_R

Modelica.Electrical.PowerConverters.Examples.ACDC.Rectifier1Pulse

One pulse rectifier with resistive load and constant firing angle

HalfControlledBridge2Pulse

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2Pulse

Two pulse Graetz half controlled bridge with resistive load

ThyristorBridge2Pulse_R

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2Pulse

Two pulse Graetz thyristor bridge rectifier with resistive load

ThyristorBridge2Pulse_RL

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2Pulse

Two pulse Graetz thyristor bridge rectifier with R-L load

ThyristorBridge2Pulse_RLV

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2Pulse

Two pulse Graetz thyristor bridge rectifier with R-L load and voltage

ThyristorCenterTap2Pulse_R

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2Pulse

Two pulse thyristor rectifier with center tap and resistive load

ThyristorCenterTap2Pulse_RL

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2Pulse

Two pulse thyristor rectifier with center tap and R-L load

ThyristorCenterTap2Pulse_RLV

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2Pulse

Two pulse thyristor rectifier with center tap and R-L load and voltage

ThyristorCenterTapmPulse_R

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse

2*m pulse thyristor rectifier with center tap and resistive load

ThyristorCenterTapmPulse_RL

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse

2*m pulse thyristor rectifier with center tap and R-L load

ThyristorCenterTapmPulse_RLV

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse

2*m pulse thyristor rectifier with center tap and R-L load and voltage

HalfControlledBridge2mPulse

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2mPulse

2*m pulse half controlled rectifier bridge with resistive load

ThyristorBridge2mPulse_R

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2mPulse

2*m pulse thyristor rectifier bridge with resistive load

ThyristorBridge2mPulse_RL

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2mPulse

2*m pulse thyristor rectifier bridge with R-L load

ThyristorBridge2mPulse_RLV

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierBridge2mPulse

2*m pulse thyristor rectifier bridge with R-L load and voltage

ThyristorCenterTap2mPulse_R

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse

2*m pulse thyristor center tap rectifier with resistive load

ThyristorCenterTap2mPulse_RL

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse

2*m pulse thyristor rectifier with R-L load

ThyristorCenterTap2mPulse_RLV

Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse

2*m pulse thyristor center tap rectifier with R-L load and voltage

SeriesBode

Modelica.Electrical.QuasiStationary.SinglePhase.Examples

Series circuit with Bode analysis

SeriesResonance

Modelica.Electrical.QuasiStationary.SinglePhase.Examples

Series resonance circuit

ParallelResonance

Modelica.Electrical.QuasiStationary.SinglePhase.Examples

Parallel resonance circuit

TransformerTestbench

Modelica.Electrical.QuasiStationary.Machines.Examples

Transformer test bench

SMPM_Inverter

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Starting of permanent magnet synchronous machine with inverter

SMPM_CurrentSource

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Test example: PermanentMagnetSynchronousInductionMachine fed by current source

SMPM_VoltageSource

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Test example: PermanentMagnetSynchronousInductionMachine fed by FOC

SMEE_DOL

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

ElectricalExcitedSynchronousInductionMachine starting direct on line

SMEE_Generator_MultiPhase

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Electrical excited multi phase synchronous machine operating as generator

SMEE_Generator

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Electrical excited synchronous machine operating as generator

SMR_Inverter

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Starting of synchronous reluctance machine with inverter

SMPM_CurrentSource

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Test example: PermanentMagnetSynchronousMachine fed by current source

SMPM_MTPA

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Test example: PermanentMagnetSynchronousMachine, investigating maximum torque per Amps

SMEE_Generator

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Electrical excited synchronous machine operating as generator

SMR_CurrentSource

Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines

Test example: Synchronous reluctance machine fed by current source

Fourbar1

Modelica.Mechanics.MultiBody.Examples.Loops

One kinematic loop with four bars (with only revolute joints; 5 non-linear equations)

Fourbar2

Modelica.Mechanics.MultiBody.Examples.Loops

One kinematic loop with four bars (with UniversalSpherical joint; 1 non-linear equation)

Fourbar_analytic

Modelica.Mechanics.MultiBody.Examples.Loops

One kinematic loop with four bars (with JointSSP joint; analytic solution of non-linear algebraic loop)

readRealParameterModel

Modelica.Utilities.Examples

Demonstrate usage of Examples.readRealParameter/.expression

Used in Components (154)

Sine

Modelica.Blocks.Sources

Generate sine signal

Cosine

Modelica.Blocks.Sources

Generate cosine signal

ExpSine

Modelica.Blocks.Sources

Generate exponentially damped sine signal

ComplexRotatingPhasor

Modelica.ComplexBlocks.Sources

Generate a phasor with constant magnitude and constant angular velocity of type Complex

ComplexRampPhasor

Modelica.ComplexBlocks.Sources

Generate a phasor with ramped magnitude and constant angle

EMF

Modelica.Electrical.Analog.Basic

Electromotoric force (electric/mechanic transformer)

SineVoltage

Modelica.Electrical.Analog.Sources

Sine voltage source

CosineVoltage

Modelica.Electrical.Analog.Sources

Cosine voltage source

ExpSineVoltage

Modelica.Electrical.Analog.Sources

Exponentially damped sine voltage source

SineCurrent

Modelica.Electrical.Analog.Sources

Sine current source

CosineCurrent

Modelica.Electrical.Analog.Sources

Cosine current source

ExpSineCurrent

Modelica.Electrical.Analog.Sources

Exponentially damped sine current source

PartialAirGap

Modelica.Electrical.Machines.BasicMachines.Components

Partial airgap model

HallSensor

Modelica.Electrical.Machines.Sensors

Hall sensor

ToSpacePhasor

Modelica.Electrical.Machines.SpacePhasors.Blocks

Conversion of multi phase instantaneous values to space phasors

FromSpacePhasor

Modelica.Electrical.Machines.SpacePhasors.Blocks

Conversion of space phasors to multi phase instantaneous values

PartialBasicMachine

Modelica.Electrical.Machines.Interfaces

Partial model for all machines

FlangeSupport

Modelica.Electrical.Machines.Interfaces

Shaft and support

VfController

Modelica.Electrical.Machines.Utilities

Voltage-Frequency-Controller

SineVoltage

Modelica.Electrical.MultiPhase.Sources

Multiphase sine voltage source

CosineVoltage

Modelica.Electrical.MultiPhase.Sources

Multiphase cosine voltage source

SineCurrent

Modelica.Electrical.MultiPhase.Sources

Multiphase sine current source

CosineCurrent

Modelica.Electrical.MultiPhase.Sources

Multiphase cosine current source

Signal2mPulse

Modelica.Electrical.PowerConverters.ACDC.Control

Generic control of 2*m pulse rectifiers

VoltageBridge2Pulse

Modelica.Electrical.PowerConverters.ACDC.Control

Control of 2 pulse bridge rectifier

VoltageBridge2mPulse

Modelica.Electrical.PowerConverters.ACDC.Control

Control of 2*m pulse bridge rectifier

VoltageCenterTap2mPulse

Modelica.Electrical.PowerConverters.ACDC.Control

Control of 2*m pulse center tap rectifier

SVPWM

Modelica.Electrical.PowerConverters.DCAC.Control

SpaceVector Pulse Width Modulation

IdealTransformer

Modelica.Electrical.QuasiStationary.SinglePhase.Ideal

Ideal transformer

PotentialSensor

Modelica.Electrical.QuasiStationary.SinglePhase.Sensors

Potential sensor

VoltageSensor

Modelica.Electrical.QuasiStationary.SinglePhase.Sensors

Voltage sensor

CurrentSensor

Modelica.Electrical.QuasiStationary.SinglePhase.Sensors

Current sensor

PowerSensor

Modelica.Electrical.QuasiStationary.SinglePhase.Sensors

Power sensor

MultiSensor

Modelica.Electrical.QuasiStationary.SinglePhase.Sensors

Sensor to measure current, voltage and power

VoltageSource

Modelica.Electrical.QuasiStationary.SinglePhase.Sources

Constant AC voltage

FrequencySweepVoltageSource

Modelica.Electrical.QuasiStationary.SinglePhase.Sources

Voltage source with integrated frequency sweep

CurrentSource

Modelica.Electrical.QuasiStationary.SinglePhase.Sources

Constant AC current

FrequencySweepCurrentSource

Modelica.Electrical.QuasiStationary.SinglePhase.Sources

Current source with integrated frequency sweep

TwoPin

Modelica.Electrical.QuasiStationary.SinglePhase.Interfaces

Two pins

Source

Modelica.Electrical.QuasiStationary.SinglePhase.Interfaces

Partial voltage / current source

ToSpacePhasor

Modelica.Electrical.QuasiStationary.Machines.SpacePhasors.Blocks

Conversion: three phase -> space phasor

FromSpacePhasor

Modelica.Electrical.QuasiStationary.Machines.SpacePhasors.Blocks

Conversion: space phasor -> three phase

SymmetricalComponents

Modelica.Electrical.QuasiStationary.MultiPhase.Blocks

Creates symmetrical components from signals representing quasi static phasors

FromSymmetricalComponents

Modelica.Electrical.QuasiStationary.MultiPhase.Blocks

Creates quasi static phasors from symmetrical components

ToSpacePhasor

Modelica.Electrical.QuasiStationary.MultiPhase.Blocks

Conversion: m phase -> space phasor

FromSpacePhasor

Modelica.Electrical.QuasiStationary.MultiPhase.Blocks

Conversion: space phasor -> m phase

PotentialSensor

Modelica.Electrical.QuasiStationary.MultiPhase.Sensors

Potential sensor

VoltageSensor

Modelica.Electrical.QuasiStationary.MultiPhase.Sensors

Voltage sensor

CurrentSensor

Modelica.Electrical.QuasiStationary.MultiPhase.Sensors

Current Sensor

PowerSensor

Modelica.Electrical.QuasiStationary.MultiPhase.Sensors

Power sensor

MultiSensor

Modelica.Electrical.QuasiStationary.MultiPhase.Sensors

Multiphase sensor to measure current, voltage and power

VoltageSource

Modelica.Electrical.QuasiStationary.MultiPhase.Sources

Constant multiphase AC voltage

FrequencySweepVoltageSource

Modelica.Electrical.QuasiStationary.MultiPhase.Sources

Voltage source with integrated frequency sweep

CurrentSource

Modelica.Electrical.QuasiStationary.MultiPhase.Sources

Constant multiphase AC current

FrequencySweepCurrentSource

Modelica.Electrical.QuasiStationary.MultiPhase.Sources

Current source with integrated frequency sweep

TwoPlug

Modelica.Electrical.QuasiStationary.MultiPhase.Interfaces

Two plugs with pin-adapter

OnePort

Modelica.Electrical.QuasiStationary.MultiPhase.Interfaces

Source

Modelica.Electrical.QuasiStationary.MultiPhase.Interfaces

Partial voltage / current source

Reference

Modelica.Electrical.QuasiStationary.Types

Reference angle

SinglePhaseElectroMagneticConverter

Modelica.Magnetic.FundamentalWave.Components

Single phase electro magnetic converter

MultiPhaseElectroMagneticConverter

Modelica.Magnetic.FundamentalWave.Components

Multi phase electro magnetic converter

SinglePhaseWinding

Modelica.Magnetic.FundamentalWave.BasicMachines.Components

Symmetric winding model coupling electrical and magnetic domain

SymmetricMultiPhaseWinding

Modelica.Magnetic.FundamentalWave.BasicMachines.Components

Symmetric winding model coupling electrical and magnetic domain

RotorSaliencyAirGap

Modelica.Magnetic.FundamentalWave.BasicMachines.Components

Air gap model with rotor saliency

ConstantMagneticPotentialDifference

Modelica.Magnetic.FundamentalWave.Sources

Source with constant magnetic potential difference

SignalMagneticPotentialDifference

Modelica.Magnetic.FundamentalWave.Sources

Source of magnetic potential difference with signal input

ConstantFlux

Modelica.Magnetic.FundamentalWave.Sources

Source of constant magnetic flux

SignalFlux

Modelica.Magnetic.FundamentalWave.Sources

Source of time varying magnetic flux

PartialTwoPortExtended

Modelica.Magnetic.FundamentalWave.Interfaces

Two magnetic ports for graphical modeling with additional variables

PartialTwoPortElementary

Modelica.Magnetic.FundamentalWave.Interfaces

Two magnetic ports for textual modeling

PartialBasicInductionMachine

Modelica.Magnetic.FundamentalWave.Interfaces

Partial model for induction machine

StateSelector

Modelica.Magnetic.FundamentalWave.Interfaces

Transform instantaneous values to space phasors and select states

HollowCylinderAxialFlux

Modelica.Magnetic.QuasiStatic.FluxTubes.Shapes.FixedShape

(Hollow) cylinder with axial flux; fixed shape; linear or non-linear material characteristics

HollowCylinderRadialFlux

Modelica.Magnetic.QuasiStatic.FluxTubes.Shapes.FixedShape

Hollow cylinder with radial flux; fixed shape; linear or non-linear material characteristics

PartialTwoPortsElementary

Modelica.Magnetic.QuasiStatic.FluxTubes.Interfaces

Partial component with two magnetic ports p and n for textual programming

PartialFixedShape

Modelica.Magnetic.QuasiStatic.FluxTubes.Interfaces

Base class for flux tubes with fixed shape during simulation; linear or non-linear material characteristics

Source

Modelica.Magnetic.QuasiStatic.FluxTubes.Interfaces

Partial magnetic voltage or flux source

MultiPhaseElectroMagneticConverter

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components

Multi phase electro magnetic converter

QuasiStaticAnalogElectroMagneticConverter

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components

Electro magnetic converter to only (!) quasi static analog, neglecting induced voltage

IM_SquirrelCage

Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.InductionMachines

Induction machine with squirrel cage

IM_SlipRing

Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.InductionMachines

Induction machine with slip ring rotor

SymmetricMultiPhaseWinding

Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.Components

Symmetric winding model coupling electrical and magnetic domain

QuasiStaticAnalogWinding

Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.Components

Quasi static single phase winding neglecting induced voltage

RotorSaliencyAirGap

Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.Components

Air gap model with rotor saliency

PermanentMagnet

Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.Components

Permanent magnet model without intrinsic reluctance, represented by magnetic potential difference

PartialBasicMachine

Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.BaseClasses

Partial model for quasi static multi phase machines

ConstantMagneticPotentialDifference

Modelica.Magnetic.QuasiStatic.FundamentalWave.Sources

Source with constant magnetic potential difference

SignalMagneticPotentialDifference

Modelica.Magnetic.QuasiStatic.FundamentalWave.Sources

Source of magnetic potential difference with signal input

ConstantFlux

Modelica.Magnetic.QuasiStatic.FundamentalWave.Sources

Source of constant magnetic flux

SignalFlux

Modelica.Magnetic.QuasiStatic.FundamentalWave.Sources

Source of time varying magnetic flux

MagneticFluxSensor

Modelica.Magnetic.QuasiStatic.FundamentalWave.Sensors

Sensor to measure magnetic flux

MagneticPotentialDifferenceSensor

Modelica.Magnetic.QuasiStatic.FundamentalWave.Sensors

Sensor to measure magnetic potential difference

MagneticPotentialSensor

Modelica.Magnetic.QuasiStatic.FundamentalWave.Sensors

Sensor to measure magnetic potential

PartialTwoPortExtended

Modelica.Magnetic.QuasiStatic.FundamentalWave.Interfaces

Partial two port for graphical programming with additional variables

PartialTwoPortElementary

Modelica.Magnetic.QuasiStatic.FundamentalWave.Interfaces

Elementary partial two port for textual programming

VfController

Modelica.Magnetic.QuasiStatic.FundamentalWave.Utilities

Voltage-Frequency-Controller

CurrentController

Modelica.Magnetic.QuasiStatic.FundamentalWave.Utilities

Current controller

Cylinder

Modelica.Mechanics.MultiBody.Examples.Loops.Utilities

Cylinder with rod and crank of a combustion engine

PathPlanning1

Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components

Generate reference angles for fastest kinematic movement

PathPlanning6

Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components

Generate reference angles for fastest kinematic movement

MechanicalStructure

Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.Components

Model of the mechanical part of the r3 robot (without animation)

Revolute

Modelica.Mechanics.MultiBody.Joints

Revolute joint (1 rotational degree-of-freedom, 2 potential states, optional axis flange)

Cylindrical

Modelica.Mechanics.MultiBody.Joints

Cylindrical joint (2 degrees-of-freedom, 4 potential states)

Universal

Modelica.Mechanics.MultiBody.Joints

Universal joint (2 degrees-of-freedom, 4 potential states)

Planar

Modelica.Mechanics.MultiBody.Joints

Planar joint (3 degrees-of-freedom, 6 potential states)

Spherical

Modelica.Mechanics.MultiBody.Joints

Spherical joint (3 constraints and no potential states, or 3 degrees-of-freedom and 3 states)

FreeMotion

Modelica.Mechanics.MultiBody.Joints

Free motion joint (6 degrees-of-freedom, 12 potential states)

GearConstraint

Modelica.Mechanics.MultiBody.Joints

Ideal 3-dim. gearbox (arbitrary shaft directions)

RollingWheel

Modelica.Mechanics.MultiBody.Joints

Joint (no mass, no inertia) that describes an ideal rolling wheel (rolling on the plane z=0)

RollingWheelSet

Modelica.Mechanics.MultiBody.Joints

Joint (no mass, no inertia) that describes an ideal rolling wheel set (two ideal rolling wheels connected together by an axis)

RevoluteWithLengthConstraint

Modelica.Mechanics.MultiBody.Joints.Internal

Revolute joint where the rotation angle is computed from a length constraint (1 degree-of-freedom, no potential state)

Body

Modelica.Mechanics.MultiBody.Parts

Rigid body with mass, inertia tensor and one frame connector (12 potential states)

BodyShape

Modelica.Mechanics.MultiBody.Parts

Rigid body with mass, inertia tensor, different shapes for animation, and two frame connectors (12 potential states)

BodyBox

Modelica.Mechanics.MultiBody.Parts

Rigid body with box shape. Mass and animation properties are computed from box data and density (12 potential states)

BodyCylinder

Modelica.Mechanics.MultiBody.Parts

Rigid body with cylinder shape. Mass and animation properties are computed from cylinder data and density (12 potential states)

Mounting1D

Modelica.Mechanics.MultiBody.Parts

Propagate 1-dim. support torque to 3-dim. system (provided world.driveTrainMechanics3D=true)

Rotor1D

Modelica.Mechanics.MultiBody.Parts

1D inertia attachable on 3-dim. bodies (3D dynamic effects are taken into account if world.driveTrainMechanics3D=true)

RotorWith3DEffects

Modelica.Mechanics.MultiBody.Parts.Rotor1D

1D inertia attachable on 3-dim. bodies (3D dynamic effects are taken into account)

RollingWheel

Modelica.Mechanics.MultiBody.Parts

Ideal rolling wheel on flat surface z=0 (5 positional, 3 velocity degrees of freedom)

RollingWheelSet

Modelica.Mechanics.MultiBody.Parts

Ideal rolling wheel set consisting of two ideal rolling wheels connected together by an axis

AbsoluteSensor

Modelica.Mechanics.MultiBody.Sensors

Measure absolute kinematic quantities of frame connector

RelativeSensor

Modelica.Mechanics.MultiBody.Sensors

Measure relative kinematic quantities between two frame connectors

AbsoluteAngles

Modelica.Mechanics.MultiBody.Sensors

Measure absolute angles between frame connector and the world frame

RelativeAngles

Modelica.Mechanics.MultiBody.Sensors

Measure relative angles between two frame connectors

Torus

Modelica.Mechanics.MultiBody.Visualizers

Visualizing a torus

SpringDamper

Modelica.Mechanics.Rotational.Examples.Utilities

Input/output block of a spring/damper model

Spring

Modelica.Mechanics.Rotational.Examples.Utilities

Input/output block of a spring model

SpringDamperNoRelativeStates

Modelica.Mechanics.Rotational.Examples.Utilities

Linear 1D rotational spring and damper in parallel (phi and w are not used as states)

Fixed

Modelica.Mechanics.Rotational.Components

Flange fixed in housing at a given angle

Inertia

Modelica.Mechanics.Rotational.Components

1D-rotational component with inertia

Disc

Modelica.Mechanics.Rotational.Components

1-dim. rotational rigid component without inertia, where right flange is rotated by a fixed angle with respect to left flange

Spring

Modelica.Mechanics.Rotational.Components

Linear 1D rotational spring

SpringDamper

Modelica.Mechanics.Rotational.Components

Linear 1D rotational spring and damper in parallel

ElastoBacklash

Modelica.Mechanics.Rotational.Components

Backlash connected in series to linear spring and damper (backlash is modeled with elasticity)

ElastoBacklash2

Modelica.Mechanics.Rotational.Components

Backlash connected in series to linear spring and damper (backlash is modeled with elasticity; at start of contact the flange torque can jump, contrary to the ElastoBacklash model)

BearingFriction

Modelica.Mechanics.Rotational.Components

Coulomb friction in bearings

Brake

Modelica.Mechanics.Rotational.Components

Brake based on Coulomb friction

IdealGear

Modelica.Mechanics.Rotational.Components

Ideal gear without inertia

LossyGear

Modelica.Mechanics.Rotational.Components

Gear with mesh efficiency and bearing friction (stuck/rolling possible)

Gearbox

Modelica.Mechanics.Rotational.Components

Realistic model of a gearbox (based on LossyGear)

InitializeFlange

Modelica.Mechanics.Rotational.Components

Initializes a flange with pre-defined angle, speed and angular acceleration (usually, this is reference data from a control bus)

RelativeStates

Modelica.Mechanics.Rotational.Components

Definition of relative state variables

RelSpeedSensor

Modelica.Mechanics.Rotational.Sensors

Ideal sensor to measure the relative angular velocity between two flanges

RelAccSensor

Modelica.Mechanics.Rotational.Sensors

Ideal sensor to measure the relative angular acceleration between two flanges

Position

Modelica.Mechanics.Rotational.Sources

Forced movement of a flange according to a reference angle signal

Speed

Modelica.Mechanics.Rotational.Sources

Forced movement of a flange according to a reference angular velocity signal

Accelerate

Modelica.Mechanics.Rotational.Sources

Forced movement of a flange according to an acceleration signal

Move

Modelica.Mechanics.Rotational.Sources

Forced movement of a flange according to an angle, speed and angular acceleration signal

InternalSupport

Modelica.Mechanics.Rotational.Interfaces

Adapter model to utilize conditional support connector

PartialCompliant

Modelica.Mechanics.Rotational.Interfaces

Partial model for the compliant connection of two rotational 1-dim. shaft flanges

PartialCompliantWithRelativeStates

Modelica.Mechanics.Rotational.Interfaces

Partial model for the compliant connection of two rotational 1-dim. shaft flanges where the relative angle and speed are used as preferred states

PartialElementaryOneFlangeAndSupport2

Modelica.Mechanics.Rotational.Interfaces

Partial model for a component with one rotational 1-dim. shaft flange and a support used for textual modeling, i.e., for elementary models

PartialElementaryTwoFlangesAndSupport2

Modelica.Mechanics.Rotational.Interfaces

Partial model for a component with two rotational 1-dim. shaft flanges and a support used for textual modeling, i.e., for elementary models

PartialTorque

Modelica.Mechanics.Rotational.Interfaces

Partial model of a torque acting at the flange (accelerates the flange)

Extended by (1)

BraggAngle

Modelica.SIunits