Documentation /  Analog Insydes /  A Short Introduction /  Getting Started /

IntroductionThe First Step

1.2.1 Command Overview

The most important Analog Insydes commands are listed in this section. For each command, references are given where to find more information. A link to the reference manual (Part 3 of this book) is given first, followed by links to related topics described in the tutorial (Part 2 of this book).

Interfaces

Analog Insydes provides import and export filters to PSpice, Eldo, and Saber (Chapter 3.10):

FilledSmallSquare ReadNetlist (Section 3.10.1, Section 2.9.2) translates external netlist files (including model cards, small-signal data, and operating-point information) into the Analog Insydes netlist language.

FilledSmallSquare ReadSimulationData (Section 3.10.3, Section 2.10.2) allows for importing and transforming numerical simulation data into Mathematica InterpolatingFunction objects.

FilledSmallSquare WriteSimulationData (Section 3.10.4) exports numerical data calculated with Analog Insydes for further postprocessing in external waveform viewers.

FilledSmallSquare WriteModel (Section 3.10.5) generates behavioral model descriptions of symbolic (approximated) equation systems.

Netlists, Circuits, and Models

In Analog Insydes, analog circuits are expressed in terms of Netlist, Circuit, and Model objects:

FilledSmallSquare Netlist (Section 3.1.1, Chapter 2.2) is the basic data structure which contains the elements of a flat netlist.

FilledSmallSquare Circuit (Section 3.1.2, Chapter 2.3, Section 2.3.1) is a data structure which combines netlists, models, model parameters, and global parameters.

FilledSmallSquare Model (Section 3.2.1, Section 2.3.2, Section 2.6.2) is a data structure which defines netlist-based or equations-based models or subcircuits.

FilledSmallSquare AddElements (Section 3.6.1, Section 2.9.4), DeleteElements (Section 3.6.2, Section 2.9.4), GetElements (Section 3.6.3), and RenameNodes (Section 3.6.4) allow for adding, deleting, or extracting netlist entries and changing node names, respectively, in a comfortable way.

FilledSmallSquare Statistics (Section 3.6.17) prints information on the contents of a Netlist or Circuit object.

Analog Insydes provides a predefined symbolic device model library (Chapter 4.3), which can be extended by the user. Several commands allow for accessing the model data base (Chapter 3.3):

FilledSmallSquare LoadModel (Section 3.3.6) loads a specific model from a given model library.

FilledSmallSquare FindModel (Section 3.3.2) searches the default model library for a given name/selector pair.

FilledSmallSquare GlobalSubcircuits (Section 3.3.4, Section 2.3.6) prints the name/selector pairs of all global models currently loaded.

FilledSmallSquare ListLibrary (Section 3.3.1) prints the contents of a specific model library.

Equations

Starting from Circuit or Netlist objects, circuit equations can be set up automatically in different formulations and analysis modes. They are stored (together with additional information) in a DAEObject.

FilledSmallSquare CircuitEquations (Section 3.5.1, Chapter 2.4, Section 2.4.2, Section 2.6.4) sets up circuit equations from a Circuit or Netlist object and returns a DAEObject.

FilledSmallSquare Solve (Section 3.5.4, Section 2.4.2) can be used to symbolically solve the equations stored in a DAEObject.

FilledSmallSquare GetEquations (Section 3.6.5, Section 2.10.2), GetVariables (Section 3.6.7, Section 2.10.2), GetDesignPoint (Section 3.6.12, Section 2.9.6), and GetParameters (Section 3.6.9, Section 2.10.2) give easy access to the data stored in a DAEObject.

FilledSmallSquare ApplyDesignPoint (Section 3.6.13), UpdateDesignPoint (Section 3.6.14, Section 2.10.2), and MatchSymbols (Section 3.6.15, Section 2.9.3) allow for modifying the contents of a DAEObject.

FilledSmallSquare GetDAEOptions (Section 3.6.10) and SetDAEOptions (Section 3.6.11) allow for accessing or modifying the options stored in a DAEObject.

FilledSmallSquare Statistics (Section 3.6.17, Section 2.9.7) prints information on the complexity of a DAEObject.

Numerical Analyses

The standard numerical circuit analyses can be carried out by the following commands (Chapter 3.7):

FilledSmallSquare NDAESolve (Section 3.7.5, Chapter 2.7) is used to solve nonlinear differential-algebraic equation systems. It calculates the DC (Section 2.6.6), DC-transfer (Section 2.7.2), and transient solution (Section 2.7.1), also parametric (Section 2.7.2).

FilledSmallSquare ACAnalysis (Section 3.7.3, Section 2.9.7) computes the small-signal solution of a linear equation system.

FilledSmallSquare NoiseAnalysis (Section 3.7.4) computes the output noise and the equivalent input noise of a linear equation system.

Poles and Zeros

Besides the standard numerical analyses, Analog Insydes provides functions for numerically computing poles and zeros as well as root loci of linear systems (Chapter 3.8):

FilledSmallSquare PolesAndZerosByQZ (Section 3.8.3), PolesByQZ (Section 3.8.4), and ZerosByQZ (Section 3.8.5) numerically compute poles and zeros of a linear system using the QZ algorithm.

FilledSmallSquare RootLocusByQZ (Section 3.8.6) computes the root locus of a linear system.

Graphical Postprocessing

Analog Insydes provides special graphics functions for the most important electrical engineering plots:

FilledSmallSquare BodePlot (Section 3.9.1, Section 2.5.1)

FilledSmallSquare FourierPlot (Section 3.9.2)

FilledSmallSquare NicholPlot (Section 3.9.3, Section 2.5.3)

FilledSmallSquare NyquistPlot (Section 3.9.4, Section 2.5.2)

FilledSmallSquare RootLocusPlot (Section 3.9.5, Section 2.5.4)

FilledSmallSquare TransientPlot (Section 3.9.6, Section 2.7.1, Section 2.7.6)

Symbolic Approximation

One of the most important features of Analog Insydes is its capability to reduce the complexity of symbolic equations and expressions with automatic error control. For linear circuits, Analog Insydes provides SBG and SAG methods (Chapter 2.8):

FilledSmallSquare ApproximateTransferFunction (Section 3.11.2, Chapter 2.8, Section 2.8.2) approximates a symbolic transfer function by removing insignificant terms.

FilledSmallSquare ApproximateMatrixEquation (Section 3.11.3, Chapter 2.8, Section 2.8.3) approximates a symbolic matrix equation with respect to a certain output variable.

FilledSmallSquare ApproximateDeterminant (Section 3.8.8) approximates a symbolic matrix equation with respect to a certain pole.

As of Analog Insydes Version 2 there are also simplification routines for nonlinear equations (Chapter 3.12):

FilledSmallSquare CompressNonlinearEquations (Section 3.12.2, Section 2.10.2) algebraically simplifies nonlinear equations by eliminating irrelevant variables.

FilledSmallSquare CancelTerms (Section 3.12.3, Section 2.10.2) approximates a symbolic nonlinear equation system with respect to a certain output variable. The command NonlinearSetup (Section 3.12.1, Section 2.10.2) prepares the application of CancelTerms.

Miscellaneous

FilledSmallSquare DXFGraphics (Section 3.13.2) translates DXF files into Mathematica graphics objects. It can be used to display circuit schematics in a Mathematica notebook for documentation purposes.

FilledSmallSquare Options[Analog Insydes] (Chapter 3.14) returns the list of global Analog Insydes options. See Section 3.14.8 for a description of the option inheritance mechanism in Analog Insydes.

FilledSmallSquare Info[AnalogInsydes] (Section 3.15.6) prints the exact location of your Analog Insydes installation and lists all loaded init files. For a description of init file loading see Section 3.15.1. For further information on the Analog Insydes environment see Chapter 3.15.

IntroductionThe First Step