特殊函数
主题概览 »通过在 Wolfram Research 二十多年的紧密研究和开发,Wolfram 语言具有世界上最广泛、覆盖最深的特殊函数,且扩展到具有实用闭合式解析解的整个域中. 使用原结果和方法,Wolfram 语言中所有特殊函数都支持参数的所有复数值的任意精度的计算,甚至在分支点的任意级数展开,以及一个更广范围的确切关系、变换和化简的运算.
伽玛函数、贝塔函数和相关函数 »
Gamma ▪ Pochhammer ▪ Beta ▪ PolyGamma ▪ LogGamma ▪ ...
误差和指数积分函数 »
Erf ▪ Erfc ▪ ExpIntegralE ▪ ExpIntegralEi ▪ LogIntegral ▪ FresnelS ▪ SinIntegral ▪ ...
正交多项式
LegendreP ▪ HermiteH ▪ LaguerreL ▪ JacobiP ▪ GegenbauerC ▪ ChebyshevT ▪ ChebyshevU ▪ ZernikeR ▪ SphericalHarmonicY ▪ WignerD
贝塞尔(Bessel)相关函数 »
BesselJ ▪ BesselY ▪ BesselI ▪ BesselK ▪ AiryAi ▪ AiryAiPrime ▪ SphericalBesselJ ▪ KelvinBer ▪ HankelH1 ▪ StruveH ▪ ...
与 Legendre 相关的函数
LegendreP ▪ LegendreQ ▪ SpheroidalPS ▪ SpheroidalQS
超几何函数 »
Hypergeometric2F1 ▪ HypergeometricPFQ ▪ HypergeometricU ▪ MeijerG ▪ FoxH ▪ AppellF1 ▪ BilateralHypergeometricPFQ ▪ ...
椭圆积分 »
EllipticK ▪ EllipticF ▪ EllipticE ▪ EllipticPi ▪ CarlsonRF ▪ CarlsonRK ▪ ...
椭圆函数 »
JacobiSN ▪ InverseJacobiSN ▪ WeierstrassP ▪ EllipticTheta ▪ ...
模数形式
DedekindEta ▪ KleinInvariantJ ▪ ModularLambda ▪ SiegelTheta
Zeta 函数与多对数»
Zeta ▪ PolyLog ▪ LerchPhi ▪ RiemannSiegelZ ▪ ...
Mathieu 函数 »
MathieuS ▪ MathieuSPrime ▪ MathieuC ▪ MathieuCharacteristicA ▪ ...
球体函数 »
SpheroidalPS ▪ SpheroidalS1 ▪ SpheroidalEigenvalue ▪ ...
Heun 函数 »
HeunG ▪ HeunC ▪ HeunB ▪ HeunD ▪ HeunT ▪ ...
库仑函数
CoulombF ▪ CoulombG ▪ CoulombH1 ▪ CoulombH2
q 函数 »
QFactorial ▪ QPochhammer ▪ QHypergeometricPFQ ▪ ...
分数微积分函数
逆函数 »
ProductLog ▪ InverseErf ▪ InverseGammaRegularized ▪ InverseEllipticNomeQ ▪ InverseWeierstrassP ▪ BesselJZero ▪ ZetaZero ▪ ...
一般结果函数
Root ▪ DifferentialRoot ▪ DifferenceRoot
N — 任意精度的数值计算
FunctionExpand — 展开成简单函数
FullSimplify — 应用全部符号化简
Derivative (') — 符号和数值求导
FindRoot — 求函数的数值根