WOLFRAM LANGUAGE TUTORIAL

Generic and NonGeneric Cases

This gives a result for the integral of that is valid for almost all values of .
In[1]:=
Click for copyable input
Out[1]=
For the special case of , however, the correct result is different.
In[2]:=
Click for copyable input
Out[2]=

The overall goal of symbolic computation is typically to get formulas that are valid for many possible values of the variables that appear in them. It is however often not practical to try to get formulas that are valid for absolutely every possible value of each variable.

The Wolfram Language always replaces by .
In[3]:=
Click for copyable input
Out[3]=
If is equal to 0, however, then the true result is not 0.
In[4]:=
Click for copyable input
Out[4]=
This construct treats both cases, but would be quite unwieldy to use.
In[5]:=
Click for copyable input
Out[5]=

If the Wolfram Language did not automatically replace by 0, then few symbolic computations would get very far. But you should realize that the practical necessity of making such replacements can cause misleading results to be obtained when exceptional values of parameters are used.

The basic operations of the Wolfram Language are nevertheless carefully set up so that whenever possible the results obtained will be valid for almost all values of each variable.

is not automatically replaced by .
In[6]:=
Click for copyable input
Out[6]=
If it were, then the result here would be , which is incorrect.
In[7]:=
Click for copyable input
Out[7]=
This makes the assumption that is a positive real variable, and does the replacement.
In[8]:=
Click for copyable input
Out[8]=